Answer:
Explanation:
fundamental frequency, f = 250 Hz
Let T be the tension in the string and length of the string is l ans m be the mass of the string initially.
the formula for the frequency is given by
.... (1)
Now the length is doubled ans the tension is four times but the mass remains same.
let the frequency is f'
.... (2)
Divide equation (2) by equation (1)
f' = √2 x f
f' = 1.414 x 250
f' = 353.5 Hz
Answer:
U₂ = 400 KJ
Explanation:
Given that
Initial energy of the tank ,U₁= 800 KJ
Heat loses by fluid ,Q= - 500 KJ
Work done on the fluid ,W= - 100 KJ
Sign -
1.Heat rejected by system - negative
2.Heat gain by system - Positive
3.Work done by system = Positive
4.Work done on the system-Negative
Lets take final internal energy =U₂
We know that
Q= U₂ - U₁ + W
-500 = U₂ - 800 - 100
U₂ = -500 +900 KJ
U₂ = 400 KJ
Therefore the final internal energy = 400 KJ
The answer is the second option, or 1/10 the same momentum.
That's ONLY true when the pendulum is hanging
in the center position and not moving.
3. Law: Every action has a reaction equal in magnitude and opposite in direction.