The volume of the solid that results when the region enclosed by the given curves y = e⁻²ˣ, y = 0, x = 0, and x = 1 is revolved around the x-axis and the y-axis is 0.77 and 0.7135.
<h3>What is the revolution of the curve?</h3>
Revolving the region bordered by y = f(x) and the x-axis on the interval [a, b] around the x-axis generates the volume (V) of a solid.
The volume is given as

The volume of the solid that results when the region enclosed by the given curves y = e⁻²ˣ, y = 0, x = 0, and x = 1 is revolved around the x-axis.
![\rm Volume = \int _0^1 \pi (e^{-2x})^2 \ dx\\\\\\Volume = \int _0^1 \pi (e^{-4x}) dx\\\\\\Volume = \pi [\dfrac{e^{-4x}}{-4}]_0^1\\\\\\Volume = - \dfrac{\pi}{4} [e^{-4} - e^0]\\\\\\Volume = -\dfrac{\pi}{4} [-0.98168]\\\\\\Volume = 0.77](https://tex.z-dn.net/?f=%5Crm%20Volume%20%3D%20%5Cint%20_0%5E1%20%5Cpi%20%28e%5E%7B-2x%7D%29%5E2%20%5C%20dx%5C%5C%5C%5C%5C%5CVolume%20%3D%20%5Cint%20_0%5E1%20%5Cpi%20%28e%5E%7B-4x%7D%29%20dx%5C%5C%5C%5C%5C%5CVolume%20%3D%20%5Cpi%20%5B%5Cdfrac%7Be%5E%7B-4x%7D%7D%7B-4%7D%5D_0%5E1%5C%5C%5C%5C%5C%5CVolume%20%3D%20-%20%5Cdfrac%7B%5Cpi%7D%7B4%7D%20%5Be%5E%7B-4%7D%20-%20e%5E0%5D%5C%5C%5C%5C%5C%5CVolume%20%3D%20-%5Cdfrac%7B%5Cpi%7D%7B4%7D%20%20%5B-0.98168%5D%5C%5C%5C%5C%5C%5CVolume%20%3D%200.77)
The volume of the solid that results when the region enclosed by the given curves y = e⁻²ˣ, y = 0, x = 0, and x = 1 is revolved around the y-axis.
![\rm Volume = \pi \left [\int_{0}^{0.135} dy + \int_{0.135}^{1}\left ( \dfrac{\ln x}{-2} \right )^{2}dy \right ]\\\\Volume =0.71375](https://tex.z-dn.net/?f=%5Crm%20Volume%20%3D%20%5Cpi%20%5Cleft%20%5B%5Cint_%7B0%7D%5E%7B0.135%7D%20dy%20%2B%20%5Cint_%7B0.135%7D%5E%7B1%7D%5Cleft%20%28%20%5Cdfrac%7B%5Cln%20x%7D%7B-2%7D%20%5Cright%20%29%5E%7B2%7Ddy%20%5Cright%20%5D%5C%5C%5C%5CVolume%20%3D0.71375)
More about the revolution of the curve link is given below.
brainly.com/question/14640419
#SPJ1