Answer:
7, -21
Step-by-step explanation:
F could be located 14 to the left of -7 or 14 to the right of -7. 7 and -21 could be the possible locations of F.
parallel lines have the same slope
y = 4x-5 the slope is 4
slope intercept form
y= mx+b
the slope is 4 and the y intercept is 3
y = 4x +3
Answer:
a) ![P[C]=p^n](https://tex.z-dn.net/?f=P%5BC%5D%3Dp%5En)
b) ![P[M]=p^{8n}(9-8p^n)](https://tex.z-dn.net/?f=P%5BM%5D%3Dp%5E%7B8n%7D%289-8p%5En%29)
c) n=62
d) n=138
Step-by-step explanation:
Note: "Each chip contains n transistors"
a) A chip needs all n transistor working to function correctly. If p is the probability that a transistor is working ok, then:
![P[C]=p^n](https://tex.z-dn.net/?f=P%5BC%5D%3Dp%5En)
b) The memory module works with when even one of the chips is defective. It means it works either if 8 chips or 9 chips are ok. The probability of the chips failing is independent of each other.
We can calculate this as a binomial distribution problem, with n=9 and k≥8:
![P[M]=P[C_9]+P[C_8]\\\\P[M]=\binom{9}{9}P[C]^9(1-P[C])^0+\binom{9}{8}P[C]^8(1-P[C])^1\\\\P[M]=P[C]^9+9P[C]^8(1-P[C])\\\\P[M]=p^{9n}+9p^{8n}(1-p^n)\\\\P[M]=p^{8n}(p^{n}+9(1-p^n))\\\\P[M]=p^{8n}(9-8p^n)](https://tex.z-dn.net/?f=P%5BM%5D%3DP%5BC_9%5D%2BP%5BC_8%5D%5C%5C%5C%5CP%5BM%5D%3D%5Cbinom%7B9%7D%7B9%7DP%5BC%5D%5E9%281-P%5BC%5D%29%5E0%2B%5Cbinom%7B9%7D%7B8%7DP%5BC%5D%5E8%281-P%5BC%5D%29%5E1%5C%5C%5C%5CP%5BM%5D%3DP%5BC%5D%5E9%2B9P%5BC%5D%5E8%281-P%5BC%5D%29%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B9n%7D%2B9p%5E%7B8n%7D%281-p%5En%29%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B8n%7D%28p%5E%7Bn%7D%2B9%281-p%5En%29%29%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B8n%7D%289-8p%5En%29)
c)
![P[M]=(0.999)^{8n}(9-8(0.999)^n)=0.9](https://tex.z-dn.net/?f=P%5BM%5D%3D%280.999%29%5E%7B8n%7D%289-8%280.999%29%5En%29%3D0.9)
This equation was solved graphically and the result is that the maximum number of chips to have a reliability of the memory module equal or bigger than 0.9 is 62 transistors per chip. See picture attached.
d) If the memoty module tolerates 2 defective chips:
![P[M]=P[C_9]+P[C_8]+P[C_7]\\\\P[M]=\binom{9}{9}P[C]^9(1-P[C])^0+\binom{9}{8}P[C]^8(1-P[C])^1+\binom{9}{7}P[C]^7(1-P[C])^2\\\\P[M]=P[C]^9+9P[C]^8(1-P[C])+36P[C]^7(1-P[C])^2\\\\P[M]=p^{9n}+9p^{8n}(1-p^n)+36p^{7n}(1-p^n)^2](https://tex.z-dn.net/?f=P%5BM%5D%3DP%5BC_9%5D%2BP%5BC_8%5D%2BP%5BC_7%5D%5C%5C%5C%5CP%5BM%5D%3D%5Cbinom%7B9%7D%7B9%7DP%5BC%5D%5E9%281-P%5BC%5D%29%5E0%2B%5Cbinom%7B9%7D%7B8%7DP%5BC%5D%5E8%281-P%5BC%5D%29%5E1%2B%5Cbinom%7B9%7D%7B7%7DP%5BC%5D%5E7%281-P%5BC%5D%29%5E2%5C%5C%5C%5CP%5BM%5D%3DP%5BC%5D%5E9%2B9P%5BC%5D%5E8%281-P%5BC%5D%29%2B36P%5BC%5D%5E7%281-P%5BC%5D%29%5E2%5C%5C%5C%5CP%5BM%5D%3Dp%5E%7B9n%7D%2B9p%5E%7B8n%7D%281-p%5En%29%2B36p%5E%7B7n%7D%281-p%5En%29%5E2)
We again calculate numerically and graphically and determine that the maximum number of transistor per chip in this conditions is n=138. See graph attached.
Answer:
WHAT COLLIG U GO 2 :3
Step-by-step explanation:
CRISSY WAKE UP I DONT LIKE THIS CRISSY WAKE UP HEY HELLO TIME TO WAKE UP TIME TO WAKE UP CAN YOU HEAR ME WAKE UP CRISSY I DONT LIKE THIS CRISSY WAKE UP AHHH DIDNT MEAN TO SCARE YOUY YOU OKAY JUST GIVE ME THE WORD AND ILL JUST WALK AWAY DO YOU EVER FELL LIKE YOUR LOSING OYUR MINE ON A DAILY BASIS ALL THE THIME YOU KNOW YOUR NOT WHAT I THOUGHT YOUD BE EDDUE DID YOU FIND ANYTHING PECSIUL BLISS JUST MOMENTS AWAY CRISSY CRISSY CRISSY CRISY SWAKE UO I DONT OIKE THIS
The second one because you times the exponents together