Answer:
381 different types of pizza (assuming you can choose from 1 to 7 ingredients)
Step-by-step explanation:
We are going to assume that you can order your pizza with 1 to 7 ingredients.
- If you want to choose 1 ingredient out of 7 you have 7 ways to do so.
- If you want to choose 2 ingredients out of 7 you have C₇,₂= 21 ways to do so
- If you want to choose 3 ingredients out of 7 you have C₇,₃= 35 ways to do so
- If you want to choose 4 ingredients out of 7 you have C₇,₄= 35 ways to do so
- If you want to choose 5 ingredients out of 7 you have C₇,₅= 21 ways to do so
- If you want to choose 6 ingredients out of 7 you have C₇,₆= 7 ways to do so
- If you want to choose 7 ingredients out of 7 you have C₇,₇= 1 ways to do so
So, in total you have 7 + 21 + 35 + 35 + 21 +7 + 1 = 127 ways of selecting ingredients.
But then you have 3 different options to order cheese, so you can combine each one of these 127 ways of selecting ingredients with a single, double or triple cheese in the crust.
Therefore you have 127 x 3 = 381 ways of combining your ingredients with the cheese crust.
Therefore, there are 381 different types of pizza.
(a+b)^7= a^7+ 7a^7b+ 21 a^6b²+ 35a^5b³+ 35 a⁴b⁴+ 21 a³b^5 + 7a²b^6 + b^7
Answer:
25
200 divided by 8 is 25.
Step-by-step explanation:
Answer:
Multiplication equation 6 t = 54 6t = 54 6t=54 Multiply each side by five.
Answer:
10
Step-by-step explanation:
2[45/(11-8)^2]
=2[45/(3)^2]
=2[45/9]
=2[5]
=10