Let's work on the left side first. And remember that
the<u> tangent</u> is the same as <u>sin/cos</u>.
sin(a) cos(a) tan(a)
Substitute for the tangent:
[ sin(a) cos(a) ] [ sin(a)/cos(a) ]
Cancel the cos(a) from the top and bottom, and you're left with
[ sin(a) ] . . . . . [ sin(a) ] which is [ <u>sin²(a)</u> ] That's the <u>left side</u>.
Now, work on the right side:
[ 1 - cos(a) ] [ 1 + cos(a) ]
Multiply that all out, using FOIL:
[ 1 + cos(a) - cos(a) - cos²(a) ]
= [ <u>1 - cos²(a)</u> ] That's the <u>right side</u>.
Do you remember that for any angle, sin²(b) + cos²(b) = 1 ?
Subtract cos²(b) from each side, and you have sin²(b) = 1 - cos²(b) for any angle.
So, on the <u>right side</u>, you could write [ <u>sin²(a)</u> ] .
Now look back about 9 lines, and compare that to the result we got for the <u>left side</u> .
They look quite similar. In fact, they're identical. And so the identity is proven.
Whew !
X would equal 2.7 //////////////
Remark
There is no short way to do this problem and no obvious way to get the answer other that to solve each part.
Solve
A
Multiply by 2
x + 1.6 = 2(x + 0.1) Remove the brackets
x + 1.6 = 2x + 0.1*2
x + 1.6 = 2x + 0.2 Subtract x from both sides
1.6 = x + 0.2 Subtract 0.2 from both sides
1.6 - 0.2 = x
1.4 = x
Circle A
B
Subtract 2x from both sides.
3x - 2x = 1.4
Circle B
C
Remove the brackets.
4x + 6 = 2x - 6 Add 6 to both sides
4x + 12 = 2x Subtract 4x from both sides.
12 = -2x Divide by - 2
12/-2 = x
x = - 6 Don't circle C
D
I'm going to be very scant in my solution of this. You can fill in the steps.
3x = 4.2
x = 4.2/3
x = 1.4
Circle D
The answer is 523 because 4,707 divide 9 to be equal numbers for each one I hope it helps