Christy should make at least 30 bracelets and at most 40 necklaces to maximize profit
<h3>How to determine how many bead of each type of bracelets and necklaces should Christy make to maximize his profit?</h3>
The given parameters can be represented in the following tabular form:
Bracelet (x) Necklace (y) Total
Labor (hour) 0.5 0.75 40
Profit 10 18
From the above table, we have the following:
Objective function:
Max P = 10x + 18y
Subject to:
0.5x + 0.75y <= 40
Because she wants to make at least 30 bracelets, we have:
x >= 30
So, we have:
Max P = 10x + 18y
Subject to:
0.5x + 0.75y <= 40
x >= 30
Express x >= 30 as equation
x = 30
Substitute x = 30 in 0.5x + 0.75y <= 40
0.5 * 30 + 0.75y <= 40
This gives
15 + 0.75y <= 40
Subtract 15 from both sides
0.75y <= 30
Divide by 0.75
y <= 40
Hence, Christy should make at least 30 bracelets and at most 40 necklaces to maximize profit
Read more about maximizing profits at:
brainly.com/question/13799721
#SPJ1
Answer:
4 chairs per table
Step-by-step explanation:
Use order of operations
P
E
M
D
A
S
So multiply 5x6 to get 30
Then times 6x3 to get 18
Next times 4x9 to get 36
Add 30, 18, and 36 together to get
84
Answer:
BD = <u>1</u> unit
AD = <u>1</u> unit
AB = <u>1.6</u> units
AC = <u>1.6</u> units
Step-by-step explanation:
In the picture attached, the triangle ABC is shown.
Given that triangle ABC is isosceles, then ∠B = ∠C
∠A + ∠B + ∠C = 180°
36° + 2∠B = 180°
∠B = (180° - 36°)/2
∠B = ∠C = 72°
From Law of Sines:
sin(∠A)/BC = sin(∠B)/AC = sin(∠C)/AB
(Remember that BC is 1 unit long)
AB = AC = sin(72°)/sin(36°) = 1.6
In triangle ABD, ∠B = 72°/2 = 36°, then:
∠A + ∠B + ∠D = 180°
36° + 36° + ∠D = 180°
∠D = 180° - 36° - 36° = 108°
From Law of Sines:
sin(∠A)/BD = sin(∠B)/AD = sin(∠D)/AB
(now ∠A = ∠B)
BD = AD = sin(∠A)*AB/sin(∠D)
BD = AD = sin(36°)*1.6/sin(108°) = 1
So what you do it you multiply that number by 100 because it is out of 100% so therefore it would be 140.6%. But I cannot tell you that that is correct without more information.