The second option is the correct cjoice
Answer:
If k = −1 then the system has no solutions.
If k = 2 then the system has infinitely many solutions.
The system cannot have unique solution.
Step-by-step explanation:
We have the following system of equations

The augmented matrix is
![\left[\begin{array}{cccc}1&-2&3&2\\1&1&1&k\\2&-1&4&k^2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C1%261%261%26k%5C%5C2%26-1%264%26k%5E2%5Cend%7Barray%7D%5Cright%5D)
The reduction of this matrix to row-echelon form is outlined below.

![\left[\begin{array}{cccc}1&-2&3&2\\0&3&-2&k-2\\2&-1&4&k^2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C0%263%26-2%26k-2%5C%5C2%26-1%264%26k%5E2%5Cend%7Barray%7D%5Cright%5D)

![\left[\begin{array}{cccc}1&-2&3&2\\0&3&-2&k-2\\0&3&-2&k^2-4\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C0%263%26-2%26k-2%5C%5C0%263%26-2%26k%5E2-4%5Cend%7Barray%7D%5Cright%5D)

![\left[\begin{array}{cccc}1&-2&3&2\\0&3&-2&k-2\\0&0&0&k^2-k-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-2%263%262%5C%5C0%263%26-2%26k-2%5C%5C0%260%260%26k%5E2-k-2%5Cend%7Barray%7D%5Cright%5D)
The last row determines, if there are solutions or not. To be consistent, we must have k such that


Case k = −1:
![\left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&-1-2\\0&0&0&(-1)^2-(-1)-2\end{array}\right] \rightarrow \left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&-3\\0&0&0&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%26-1-2%5C%5C0%260%260%26%28-1%29%5E2-%28-1%29-2%5Cend%7Barray%7D%5Cright%5D%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%26-3%5C%5C0%260%260%26-2%5Cend%7Barray%7D%5Cright%5D)
If k = −1 then the last equation becomes 0 = −2 which is impossible.Therefore, the system has no solutions.
Case k = 2:
![\left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&2-2\\0&0&0&(2)^2-(2)-2\end{array}\right] \rightarrow \left[\begin{array}{ccc|c}1&-2&3&2\\0&3&-2&0\\0&0&0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%262-2%5C%5C0%260%260%26%282%29%5E2-%282%29-2%5Cend%7Barray%7D%5Cright%5D%20%5Crightarrow%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Cc%7D1%26-2%263%262%5C%5C0%263%26-2%260%5C%5C0%260%260%260%5Cend%7Barray%7D%5Cright%5D)
This gives the infinite many solution.
13000-5600=7400...that's about it, just multiply then subtract
Answer:
1) The solution of the system is

2) The solution of the system is

Step-by-step explanation:
1) To solve the system of equations

using the row reduction method you must:
Step 1: Write the augmented matrix of the system
![\left[ \begin{array}{ccc|c} 0 & 3 & -5 & 89 \\\\ 6 & 0 & 1 & 17 \\\\ 1 & -1 & 8 & -107 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%200%20%26%203%20%26%20-5%20%26%2089%20%5C%5C%5C%5C%206%20%26%200%20%26%201%20%26%2017%20%5C%5C%5C%5C%201%20%26%20-1%20%26%208%20%26%20-107%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 2: Swap rows 1 and 2
![\left[ \begin{array}{ccc|c} 6 & 0 & 1 & 17 \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%206%20%26%200%20%26%201%20%26%2017%20%5C%5C%5C%5C%200%20%26%203%20%26%20-5%20%26%2089%20%5C%5C%5C%5C%201%20%26%20-1%20%26%208%20%26%20-107%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 3: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 1 & -1 & 8 & -107 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%203%20%26%20-5%20%26%2089%20%5C%5C%5C%5C%201%20%26%20-1%20%26%208%20%26%20-107%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 4: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 3 & -5 & 89 \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%203%20%26%20-5%20%26%2089%20%5C%5C%5C%5C%200%20%26%20-1%20%26%20%5Cfrac%7B47%7D%7B6%7D%20%26%20-%20%5Cfrac%7B659%7D%7B6%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 5: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & -1 & \frac{47}{6} & - \frac{659}{6} \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%20-%20%5Cfrac%7B5%7D%7B3%7D%20%26%20%5Cfrac%7B89%7D%7B3%7D%20%5C%5C%5C%5C%200%20%26%20-1%20%26%20%5Cfrac%7B47%7D%7B6%7D%20%26%20-%20%5Cfrac%7B659%7D%7B6%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 6: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & \frac{37}{6} & - \frac{481}{6} \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%20-%20%5Cfrac%7B5%7D%7B3%7D%20%26%20%5Cfrac%7B89%7D%7B3%7D%20%5C%5C%5C%5C%200%20%26%200%20%26%20%5Cfrac%7B37%7D%7B6%7D%20%26%20-%20%5Cfrac%7B481%7D%7B6%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 7: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{1}{6} & \frac{17}{6} \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B1%7D%7B6%7D%20%26%20%5Cfrac%7B17%7D%7B6%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%20-%20%5Cfrac%7B5%7D%7B3%7D%20%26%20%5Cfrac%7B89%7D%7B3%7D%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-13%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 8: 
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & - \frac{5}{3} & \frac{89}{3} \\\\ 0 & 0 & 1 & -13 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%205%20%5C%5C%5C%5C%200%20%26%201%20%26%20-%20%5Cfrac%7B5%7D%7B3%7D%20%26%20%5Cfrac%7B89%7D%7B3%7D%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-13%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 9: 
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%205%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%208%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-13%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 10: Rewrite the system using the row reduced matrix:
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 5 \\\\ 0 & 1 & 0 & 8 \\\\ 0 & 0 & 1 & -13 \end{array} \right] \rightarrow \left\begin{array}{ccc}x_1&=&5\\x_2&=&8\\x_3&=&-13\end{array}\right](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%205%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%208%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-13%20%5Cend%7Barray%7D%20%5Cright%5D%20%5Crightarrow%20%5Cleft%5Cbegin%7Barray%7D%7Bccc%7Dx_1%26%3D%265%5C%5Cx_2%26%3D%268%5C%5Cx_3%26%3D%26-13%5Cend%7Barray%7D%5Cright)
2) To solve the system of equations

using the row reduction method you must:
Step 1:
![\left[ \begin{array}{ccc|c} 4 & -1 & 3 & 12 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%204%20%26%20-1%20%26%203%20%26%2012%20%5C%5C%5C%5C%202%20%26%200%20%26%209%20%26%20-5%20%5C%5C%5C%5C%201%20%26%204%20%26%206%20%26%20-32%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 2: 
![\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 2 & 0 & 9 & -5 \\\\ 1 & 4 & 6 & -32 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B3%7D%7B4%7D%20%26%203%20%5C%5C%5C%5C%202%20%26%200%20%26%209%20%26%20-5%20%5C%5C%5C%5C%201%20%26%204%20%26%206%20%26%20-32%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 3: 
![\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 1 & 4 & 6 & -32 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B3%7D%7B4%7D%20%26%203%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%20%26%20%5Cfrac%7B15%7D%7B2%7D%20%26%20-11%20%5C%5C%5C%5C%201%20%26%204%20%26%206%20%26%20-32%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 4: 
![\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & \frac{1}{2} & \frac{15}{2} & -11 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B3%7D%7B4%7D%20%26%203%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B1%7D%7B2%7D%20%26%20%5Cfrac%7B15%7D%7B2%7D%20%26%20-11%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B17%7D%7B4%7D%20%26%20%5Cfrac%7B21%7D%7B4%7D%20%26%20-35%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 5: 
![\left[ \begin{array}{ccc|c} 1 & - \frac{1}{4} & \frac{3}{4} & 3 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%20-%20%5Cfrac%7B1%7D%7B4%7D%20%26%20%5Cfrac%7B3%7D%7B4%7D%20%26%203%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B17%7D%7B4%7D%20%26%20%5Cfrac%7B21%7D%7B4%7D%20%26%20-35%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 6: 
![\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & \frac{17}{4} & \frac{21}{4} & -35 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%20%5Cfrac%7B9%7D%7B2%7D%20%26%20-%20%5Cfrac%7B5%7D%7B2%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%20%5Cfrac%7B17%7D%7B4%7D%20%26%20%5Cfrac%7B21%7D%7B4%7D%20%26%20-35%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 7: 
![\left[ \begin{array}{ccc|c} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & - \frac{117}{2} & \frac{117}{2} \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%20%5Cfrac%7B9%7D%7B2%7D%20%26%20-%20%5Cfrac%7B5%7D%7B2%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%200%20%26%20-%20%5Cfrac%7B117%7D%7B2%7D%20%26%20%5Cfrac%7B117%7D%7B2%7D%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 8: 
![\left[ \begin{array}{cccc} 1 & 0 & \frac{9}{2} & - \frac{5}{2} \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%20%5Cfrac%7B9%7D%7B2%7D%20%26%20-%20%5Cfrac%7B5%7D%7B2%7D%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-1%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 9: 
![\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 15 & -22 \\\\ 0 & 0 & 1 & -1 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%200%20%26%202%20%5C%5C%5C%5C%200%20%26%201%20%26%2015%20%26%20-22%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-1%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 10: 
![\left[ \begin{array}{cccc} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcccc%7D%201%20%26%200%20%26%200%20%26%202%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%20-7%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-1%20%5Cend%7Barray%7D%20%5Cright%5D)
Step 11:
![\left[ \begin{array}{ccc|c} 1 & 0 & 0 & 2 \\\\ 0 & 1 & 0 & -7 \\\\ 0 & 0 & 1 & -1 \end{array} \right]\rightarrow \left\begin{array}{ccc}x_1&=&2\\x_2&=&-7\\x_3&=&-1\end{array}\right](https://tex.z-dn.net/?f=%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bccc%7Cc%7D%201%20%26%200%20%26%200%20%26%202%20%5C%5C%5C%5C%200%20%26%201%20%26%200%20%26%20-7%20%5C%5C%5C%5C%200%20%26%200%20%26%201%20%26%20-1%20%5Cend%7Barray%7D%20%5Cright%5D%5Crightarrow%20%5Cleft%5Cbegin%7Barray%7D%7Bccc%7Dx_1%26%3D%262%5C%5Cx_2%26%3D%26-7%5C%5Cx_3%26%3D%26-1%5Cend%7Barray%7D%5Cright)