Answer:
The final velocity of the object is 330 m/s.
Explanation:
To solve this problem, we first must find the acceleration of the object. We can do this using Newton's Second Law, given by the following equation:
F = ma
If we plug in the values that we are given in the problem, we get:
42 = 7 (a)
To solve for a, we simply divide both sides of the equation by 7.
42/7 = 7a/7
a = 6 m/s^2
Next, we should write out all of the information we have and what we are looking for.
a = 6 m/s^2
v1 = 0 m/s
t = 55 s
v2 = ?
We can use a kinematic equation to solve this problem. We should use:
v2 = v1 + at
If we plug in the values listed above, we should get:
v2 = 0 + (6)(55)
Next, we should solve the problem by performing the multiplication on the right side of the equation.
v2 = 330 m/s
Therefore, the final velocity reached by the object is 330 m/s.
Hope this helps!
Answer:
orbital speed of the electrons in their orbit will increase
Explanation:
As we know that centripetal force for electrons will be due to electrostatic attraction force of electron.
So it is given as

so we have

now on the left side if the force of attraction will increase and hence there must be the change in that part of equation
So here at the same position the speed of the electron
So we can say that correct answer will be
orbital speed of the electrons in their orbit will increase
The final kinetic energy of the skateboarder after she freewheels and did work against friction on the flat section of the path is 4,600 J.
<h3>
Conservation of energy</h3>
The final kinetic energy of the stakeboarder is determined by applying the principle of conservation of energy as shown below;
ΔK.E = -W
K.Ef - K.Ei = -W
where;
- K.Ef is the final kinetic energy
- K.Ei is the initial kinetic energy
- W is work done
K.Ef = K.Ei - W
K.Ef = 5,000 J - 400 J
K.Ef = 4,600 J
Thus, the final kinetic energy of the skateboarder is 4,600 J.
Learn more about kinetic energy here: brainly.com/question/25959744
Answer:
The pacific ocean
Explanation:
because the pacific ocean is where many earthquakes and volcanic eruptions occur.
Answer:
Explanation:
At the point when light is vertically polarized is incident on the polarizer whose axes are situated at angle points
the intensity power in the wake of going through all the polarisers is given by the Malus law, applied threefold for every one of the three axes.

The heading of the direction of the polarization is equivalent to the pivoted axes of the polarizer provided that light is an electromagnetic wave, its course of polarization is therefore controlled by the electric field part.
∴
a)
When sheet A is removed, the transmitted light goes through B, at 30°.



b)
When B is removed, No light passes since the axis of A and the axis of C are perpendicular to each other.
c)
When C is removed, the intensity is indeed zero since the axes are aligned and adjusted at 90° to one another.

