Answer:
True
Explanation:
Magnetic field lines outside of a permanent magnet always run from the north magnetic pole to the south magnetic pole. Therefore, the magnetic field lines of the earth run from the southern geographic hemisphere towards the northern geographic hemisphere.
The acceleration and distance is related to the following expression:
y=v0*t + a*t^2/2 ; v0=0
y=44.1*100/2 = 2205m
hence, the speed will be
v=0 + a*t = 441m/s
from that height it will just be subjected to the gravitational acceleration
0=v_acc^2 -2g*y_free
y_free = v_acc^2/2g = 9922.5m
<span>y_max = y_acc+y_free = 441+9922.5 =10363.5m</span>
Answer: option A. strong nuclear force.
Explanation:
The diagram shows the subatomic particles inside the nucelous: protons and neutrons.
As you know, the protons are positively charged partilces inside the nucleous.
Being those particles charged with the same kind of charge they experiment electrostatic repulsion. So, how do you explain that they can stand together in such small space as it is the nucleous?
The responsible of keeping the subatomic particles together is the so called strong nuclear force.
Strong nuclear force or simply strong force is one of the four fundamental interactions or forces: i) gravitational, ii) electromagnetic, iii) weak nuclear force, and iv) strong nuclear force.
Strong nuclear force is the strongest force of nature and acts only in short distances as those inside the nucleous and is responsible for both the atraction among quarks and the atraction among protons to bind them together inside the atomic nucleous.