Answer:
A) 5.2 x 10³ N
B) 8.8 x 10³ N
Explanation:
Part A)
= weight of the craft in downward direction = tension force in the cable when stationary = 7000 N
= Tension force in upward direction
= Drag force in upward direction = 1800 N
Force equation for the motion of craft is given as
-
-
= 0
7000 - 1800 -
= 0
= 5200 N
= 5.2 x 10³ N
Part B)
= weight of the craft in downward direction = tension force in the cable when stationary = 7000 N
= Tension force in upward direction
= Drag force in downward direction = 1800 N
Force equation for the motion of craft is given as
-
-
= 0
- 7000 - 1800 = 0
= 8800 N
= 8.8 x 10³ N
<span>earth would be thrown off its balance and nature would be in danger of too many resources and not enough resources </span>
Θ is the angular displacement = ωt
ω is the angular velocity = θ/t
α is the angular acceleration = ω/t
To solve this problem we will apply the concept of magnification, which is given as the relationship between the focal length of the eyepieces and the focal length of the objective. This relationship can be expressed mathematically as,

Here,
= Magnification
= Focal length eyepieces
= Focal length of the Objective
Rearranging to find the focal length of the objective

Replacing with our values


Therefore the focal length of th eobjective lenses is 27.75cm
Complete Question:
A coin is dropped off of a building landing on its side. It hits with a pressure of 400 N/m². It hits with a force of 0.1N. Calculate the area of the coin?
Answer:
Area = 0.00025 m²
Explanation:
Given the following data;
Pressure = 400N/m²
Force = 0.1N
To find the area of the coin;
Pressure = Force/area
Area = Force/pressure
Substituting into the equation, we have;
Area = 0.1/400
Area = 0.00025 m²