The acceleration of the boxes depends on the mass and weight.
we have a mass of 7 and 8 kilograms
if it took 25 N force to move box A, then you would take 25 and multiply by 8 then divide by 2.
It will leave you with 100 N.
finally take the sq rt of 100 to get 10
T<u>he direction of motion</u> of the person relative to the water is <u>16.7° north of east.</u>
Why?
We can solve the problem by applying the Pitagorean Theorem, where the first speed (to the north) and the second speed (to the east) corresponds to two legs of the right triangle formed with them. (north and east directions are perpendicular each other)
We can calculate the angle that give the direction using the following formula:

Now, substituting the given information we have:


Hence, we have that <u>the direction of motion</u> of the person relative to the water is 16.7° north of east.
Have a nice day!
m = mass = 5 kg
= initial velocity = 100 m/s
= final velocity = ?
I = impulse = 30 Ns
Using the impulse-change in momentum equation
I = m(
-
)
30 = 5 (
- 100)
= 106 m/s
<span>There is no special name for that. Physics is usually just concerned with "forces", and doesn't specify whether the force pushes or pulls. If you want to be more specific, you can just call it a "pulling force".
I hoped this was satisfying!:)</span>
Photon is a quantum of light or a single packet/particle of light at a given wavelength.
Answer: Option B
<u>Explanation:
</u>
It is known that light has dual nature of wave as well as particles. Light waves can behave in wave nature as well as in particle nature depending upon the situation. So the light waves are assumed in different views to easily understand the nature of light waves.
There are several models proposed to simplify the nature of light. Among the several assumptions, one of the most prominent observations are that light waves or quantum of light are termed as photons which are made up of single packet/particles of light in a given wavelength.