Answer:
it is 625
Step-by-step explanation:
Answer:
You can use the pythagorean theorem to determine the unknown value of the hypotenuse. 2. by taking advantage of their side ratios
Step-by-step explanation:
<h3>
Answer: x = 4</h3>
==================================================
Explanation:
Replace f(x) with 0 and solve for x.
f(x) = 3x-12
0 = 3x-12
3x-12 = 0
3x = 12
x = 12/3
x = 4 is a zero, aka root, of the function
---------------
Check:
f(x) = 3x-12
f(4) = 3(4)-12
f(4) = 12-12
f(4) = 0
The answer is confirmed.
Answer:
The correct option is;
x = 1
Step-by-step explanation:
The parameters given are;
Location of circle center = 1 on the x axis
Radius of circle = 1
Required operation on circle = Revolving to create a sphere
To form a spherical shape by the rotation of a circular figure involves rotating the circular figure about a line passing through the center of the circle
Therefore, to form a sphere, the circle should be about a line that passes through x = 1
Hence, the circle should be rotated about the line x = 1.
Answer:
![32 {x}^{2} \sqrt[3]{ 2x } -8{x}^{3}](https://tex.z-dn.net/?f=32%20%7Bx%7D%5E%7B2%7D%20%5Csqrt%5B3%5D%7B%202x%20%7D%20%20%20%20-8%7Bx%7D%5E%7B3%7D)
Step-by-step explanation:
We want to
![4x \sqrt[3]{4 {x}^{2} } (2 \sqrt[3]{32 {x}^{2} } - x \sqrt[3]{2x} )](https://tex.z-dn.net/?f=4x%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%7D%20%282%20%5Csqrt%5B3%5D%7B32%20%7Bx%7D%5E%7B2%7D%20%7D%20%20-%20x%20%5Csqrt%5B3%5D%7B2x%7D%20%29)
We expand to obtain:
![4x \sqrt[3]{4 {x}^{2} } \times 2 \sqrt[3]{32 {x}^{2} } -4x \sqrt[3]{4 {x}^{2} } \times x \sqrt[3]{2x} )](https://tex.z-dn.net/?f=4x%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%7D%20%20%5Ctimes%202%20%5Csqrt%5B3%5D%7B32%20%7Bx%7D%5E%7B2%7D%20%7D%20%20-4x%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%7D%20%5Ctimes%20%20x%20%5Csqrt%5B3%5D%7B2x%7D%20%29)
We now simplify
![8x \sqrt[3]{4 {x}^{2} \times 32 {x}^{2} } -4 {x}^{2} \sqrt[3]{4 {x}^{2} \times 2x}](https://tex.z-dn.net/?f=8x%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%20%5Ctimes%2032%20%7Bx%7D%5E%7B2%7D%20%7D%20%20%20%20-4%20%7Bx%7D%5E%7B2%7D%20%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%20%5Ctimes%202x%7D%20)
We multiply the radicand
![8x \sqrt[3]{64 \times {x}^{3} \times 2x } -4 {x}^{2} \sqrt[3]{8 {x}^{3}}](https://tex.z-dn.net/?f=8x%20%5Csqrt%5B3%5D%7B64%20%5Ctimes%20%7Bx%7D%5E%7B3%7D%20%20%5Ctimes%202x%20%7D%20%20%20%20-4%20%7Bx%7D%5E%7B2%7D%20%20%5Csqrt%5B3%5D%7B8%20%7Bx%7D%5E%7B3%7D%7D%20)
Or
![8x \sqrt[3]{ {(4x)}^{3} \times 2x } -4 {x}^{2} \sqrt[3]{{(2x)}^{3}}](https://tex.z-dn.net/?f=8x%20%5Csqrt%5B3%5D%7B%20%7B%284x%29%7D%5E%7B3%7D%20%20%5Ctimes%202x%20%7D%20%20%20%20-4%20%7Bx%7D%5E%7B2%7D%20%20%5Csqrt%5B3%5D%7B%7B%282x%29%7D%5E%7B3%7D%7D%20)
We take cube root to get:
![8x \times 4x\sqrt[3]{ 2x } -4 {x}^{2} \times 2x](https://tex.z-dn.net/?f=8x%20%20%5Ctimes%204x%5Csqrt%5B3%5D%7B%202x%20%7D%20%20%20%20-4%20%7Bx%7D%5E%7B2%7D%20%20%5Ctimes%202x)
We multiply out to get:
![32 {x}^{2} \sqrt[3]{ 2x } -8{x}^{3}](https://tex.z-dn.net/?f=32%20%7Bx%7D%5E%7B2%7D%20%5Csqrt%5B3%5D%7B%202x%20%7D%20%20%20%20-8%7Bx%7D%5E%7B3%7D)