Answer:
g=x+2
Step-by-step explanation:
Let's solve for g.
gx=x2+2x
Step 1: Divide both sides by x.
gx/x = x2 +2x / x
<u>g=x+2</u>
<u />
Answer:
(x, y) = (1, -1)
Step-by-step explanation:
We'll write these equations in general form, then solve using the cross-multiplication method.
43x +67y +24 = 0
67x +43y -24 = 0
∆1 = (43)(43) -(67)(67) = -2640
∆2 = (67)(-24) -(43)(24) = -2640
∆3 = (24)(67) -(-24)(43) = 2640
These go into the relations ...
1/∆1 = x/∆2 = y/∆3
x = ∆2/∆1 = -2640/-2640 = 1
y = ∆3/∆1 = 2640/-2640 = -1
The solution is (x, y) = (1, -1).
_____
<em>Additional comment</em>
The cross multiplication method isn't taught everywhere. The attachment explains a bit about it. Our final relationship changes the order of the fractions to 1, x, y from x, y, 1. That way, we can use the equation coefficients in their original general-form order. (The fourth column in the 2×4 array of coefficients is a repeat of the first column.)
Answer:
$5.45
Step-by-step explanation:
54.50÷10
Answer:
x = √(a(a+b))
Step-by-step explanation:
We can also assume a > 0 and b > 0 without loss of generality. (If a and a+b have opposite signs, the maximum angle is 180° at x=0.)
We choose to define tan(α) = -(b+a)/x and tan(β) = -a/x. Then the tangent of ∠APB is ...
tan(∠APB) = (tan(α) -tan(β))/(1 +tan(α)tan(β))
= ((-(a+b)/x) -(-a/x))/(1 +(-(a+b)/x)(-a/x))
= (-bx)/(x^2 +ab +a^2)
This will be maximized when its derivative is zero.
d(tan(∠APB))/dx = ((x^2 +ab +a^2)(-b) -(-bx)(2x))/(x^2 +ab +a^2)^2
The derivative will be zero when the numerator is zero, so we want ...
bx^2 -ab^2 -a^2b = 0
b(x^2 -(a(a+b))) = 0
This has solutions ...
b = 0
x = √(a(a+b))
The former case is the degenerate case where ∠APB is 0, and the value of x can be anything.
The latter case is the one of interest:
x = √(a(a+b)) . . . . . . the geometric mean of A and B rotated to the x-axis.
_____
<em>Comment on the result</em>
This result is validated by experiments using a geometry program. The location of P can be constructed in a few simple steps: Construct a semicircle through the origin and B. Find the intersection point of that semicircle with a line through A parallel to the x-axis. The distance from the origin to that intersection point is x.