Quadrilateral abcd has the vertices a(-6,4) , b(-4,5) , c(-3,3) , d(-5,1) . determine if quadrilateral abcd is a rhombus
1 answer:
Answer:
No
Step-by-step explanation:
The defining property of a rhombus is that it has equal side lengths.
=============================================================
Finding all side lengths :
<u>AB</u>
⇒ √(-4 + 6)² + (5 - 4)²
⇒ √2² + 1²
⇒ √5 units
<u>BC</u>
⇒ √(-3 + 4)² + (3 - 5)²
⇒ √1² + (-2)²
⇒ √5 units
<u>CD</u>
⇒ √(-5 + 3)² + (1 - 3)²
⇒ √(-2)² + (-2)²
⇒ √8 units
<u>DA</u>
⇒ √(-6 + 5)² + (4 - 1)²
⇒ √(-1)² + 3²
⇒ √10 units
As all side lengths of the quadrilateral are not equal, ABCD is not a rhombus.
You might be interested in
Answer:
2 times
Step-by-step explanation:
X = 2 expand the brackets and then collect like terms (x's on one side) and then dived to get x on its own! :)
Answer:
we could migrate here
Step-by-step explanation:
Answer:
slope is 1 and y-intercept is (0,-5)
Step-by-step explanation: