First, we can convert both of them to improper fractions.
We do that by multiplying the denominator to the whole number, adding it to the numerator, and keeping the denominator.
2 5/3 - 2 3/2
So we have:
11/3 - 7/2
Convert both of them to denominators of 6:
22/6 - 21/6
Subtract the numerators and keep the denominators:
1/6
The change in temperature for the day was 26 degrees F
You have to convert the 30 inches into you know what and add them all together
Answer:
The probability that a randomly chosen Ford truck runs out of gas before it has gone 325 miles is 0.0062.
Step-by-step explanation:
Let <em>X</em> = the number of miles Ford trucks can go on one tank of gas.
The random variable <em>X</em> is normally distributed with mean, <em>μ</em> = 350 miles and standard deviation, <em>σ</em> = 10 miles.
If the Ford truck runs out of gas before it has gone 325 miles it implies that the truck has traveled less than 325 miles.
Compute the value of P (X < 325) as follows:

Thus, the probability that a randomly chosen Ford truck runs out of gas before it has gone 325 miles is 0.0062.
Answer:
131.3 miles
Step-by-step explanation:
The two cars are moving from different directions. The total distance between the two cars = 118 miles + 256 miles = 374 miles.
Let us assume that the two cars meet at point O, let the distance between car c and O be d₁, the distance between car d and point O be d₂, hence:
d₁ + d₂ = 374 miles (1)
Let speed of car d be x mph, therefore speed of car c = 2x mph (twice of car d). If it take the cars t hours to meet at the same point, hence
For car c:
2x = d₁/t
t = d₁ / 2x
For car d;
x = d₂/t
t = d₂/ x
Since it takes both cars the same time to meet at the same point, therefore:
d₁/2x = d₂ / x
d₁ = 2d₂
d₁ - 2d₂ = 0 (2)
Solving equation 1 and 2 simultaneously gives d₁ = 249.3 miles, d₂ = 124.7 miles
Therefore the distance from point of meet to Boston = 249.3 - 118 = 131.3 miles