X% of 150 = 108
x/100 * 150 = 108
1.5x = 108
x =108 / 1.5
x = 72
Therefore 72% of 150 is 108
Hope this helps.
<h3>
Answer: Choice A</h3>
Domain = (a,b]
Range = [mc + n,md + n)
==============================================
Explanation:
The domain stays the same because we still have to go through f(x) as our first hurdle in order to get g(x).
Think of it like having 2 doors. The first door is f(x) and the second is g(x). The fact g(x) is dependent on f(x) means that whatever input restrictions are on f, also apply on g as well. So going back to the "2 doors" example, we could have a problem like trying to move a piece of furniture through them and we'd have to be concerned about the f(x) door.
-------------------
The range will be different however. The smallest value in the range of f(x) is y = c as it is the left endpoint. So the smallest f(x) can be is c. This means the smallest g(x) can be is...
g(x) = m*f(x) + n
g(x) = m*c + n
All we're doing is replacing f with c.
So that means mc+n is the starting point of the range for g(x).
The ending point of the range is md+n for similar reasons. Instead of 'c', we're dealing with 'd' this time. The curved parenthesis says we don't actually include this value in the range. A square bracket means include that value.
Answer:
Lines a and c have the same slope, so they are parallel. Write an equation of the line that passes through (5, −4) and is parallel to the line y = 2x + 3. Step 1 Find the slope of the parallel line. The graph of the given equation has a slope of 2.
Answer:
La madre de Jaime tiene 30 años más que él.
Step-by-step explanation:
Llamemos x a la edad actual de Jaime, si la edad actual de Ana es el triple que la de Jaime, entonces la edad actual de Ana es 3x.
Dentro de 15 años, la edad de Jaime será x+15 (edad actual más 15 años) y usando el mismo razonamiento, la edad de Ana será 3x + 15.
Por otro lado el problema nos dice que dentro de 15 años, la edad de Ana (que ya sabemos que será 3x + 15) será igual al doble de la que tendrá su hijo en 15 años. Esto en forma de ecuación se representa:
(la edad de Ana será igual que el doble de la de su hijo)
Resolviendo la ecuación:

Por lo tanto, Jaime tiene 15 años y su madre tiene
años. Por lo tanto la diferencia de edad es de 30 años y Ana tiene 30 años más que su Jaime.