Answer:
x = 2i, x = -2i and x = 4 are the roots of given polynomial.
Step-by-step explanation:
We are given the following expression in the question:
![f(x) = x^3 - 4x^2+ 4x - 16](https://tex.z-dn.net/?f=f%28x%29%20%3D%20x%5E3%20-%204x%5E2%2B%204x%20-%2016)
One of the zeroes of the above polynomial is 2i, that is :
![f(x) = x^3 - 4x^2+ 4x - 16\\f(2i) = (2i)^3 - 4(2i)^2+ 4(2i) - 16\\= -8i+ 16+8i-16 = 0](https://tex.z-dn.net/?f=f%28x%29%20%3D%20x%5E3%20-%204x%5E2%2B%204x%20-%2016%5C%5Cf%282i%29%20%3D%20%282i%29%5E3%20-%204%282i%29%5E2%2B%204%282i%29%20-%2016%5C%5C%3D%20-8i%2B%2016%2B8i-16%20%3D%200)
Thus, we can write
![(x-2i)\text{ is a factor of polynomial }x^3 - 4x^2 + 4x - 16](https://tex.z-dn.net/?f=%28x-2i%29%5Ctext%7B%20is%20a%20factor%20of%20polynomial%20%7Dx%5E3%20-%204x%5E2%20%2B%204x%20-%2016)
Now, we check if -2i is a root of the given polynomial:
![f(x) = x^3 - 4x^2+ 4x - 16\\f(-2i) = (-2i)^3 - 4(-2i)^2+ 4(-2i) - 16\\= 8i+ 16-8i-16 = 0](https://tex.z-dn.net/?f=f%28x%29%20%3D%20x%5E3%20-%204x%5E2%2B%204x%20-%2016%5C%5Cf%28-2i%29%20%3D%20%28-2i%29%5E3%20-%204%28-2i%29%5E2%2B%204%28-2i%29%20-%2016%5C%5C%3D%208i%2B%2016-8i-16%20%3D%200)
Thus, we can write
![(x+2i)\text{ is a factor of polynomial }x^3 - 4x^2 + 4x - 16](https://tex.z-dn.net/?f=%28x%2B2i%29%5Ctext%7B%20is%20a%20factor%20of%20polynomial%20%7Dx%5E3%20-%204x%5E2%20%2B%204x%20-%2016)
Therefore,
![(x-2i)(x+2i)\text{ is a factor of polynomial }x^3 - 4x^2 + 4x - 16\\(x^2 + 4)\text{ is a factor of polynomial }x^3 - 4x^2 + 4x - 16](https://tex.z-dn.net/?f=%28x-2i%29%28x%2B2i%29%5Ctext%7B%20is%20a%20factor%20of%20polynomial%20%7Dx%5E3%20-%204x%5E2%20%2B%204x%20-%2016%5C%5C%28x%5E2%20%2B%204%29%5Ctext%7B%20is%20a%20factor%20of%20polynomial%20%7Dx%5E3%20-%204x%5E2%20%2B%204x%20-%2016)
Dividing the given polynomial:
![\displaystyle\frac{x^3 - 4x^2 + 4x - 16}{x^2+4} = x -4](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cfrac%7Bx%5E3%20-%204x%5E2%20%2B%204x%20-%2016%7D%7Bx%5E2%2B4%7D%20%3D%20x%20-4)
Thus,
![(x-4)\text{ is a factor of polynomial }x^3 - 4x^2 + 4x - 16](https://tex.z-dn.net/?f=%28x-4%29%5Ctext%7B%20is%20a%20factor%20of%20polynomial%20%7Dx%5E3%20-%204x%5E2%20%2B%204x%20-%2016)
X = 4 is a root of the given polynomial.
![f(x) = x^3 - 4x^2+ 4x - 16\\f(4) = (4)^3 - 4(4)^2+ 4(4) - 16\\= 64-64+16-16 = 0](https://tex.z-dn.net/?f=f%28x%29%20%3D%20x%5E3%20-%204x%5E2%2B%204x%20-%2016%5C%5Cf%284%29%20%3D%20%284%29%5E3%20-%204%284%29%5E2%2B%204%284%29%20-%2016%5C%5C%3D%2064-64%2B16-16%20%3D%200)
Thus, 2i, -2i and 4 are the roots of given polynomial.
![\dfrac{x}{ - 3} < - 4 \\\\ x > 12](https://tex.z-dn.net/?f=%20%5Cdfrac%7Bx%7D%7B%20-%203%7D%20%3C%20-%204%20%5C%5C%5C%5C%20x%20%3E%2012)
P. S. The inequality sign changed or flipped when there's a negative figure involved.
Hope this helps. - M
Answer:
We need to see the expressions given
Step-by-step explanation:
Answer:
here is the answer
Step-by-step explanation:
you may please search it
Answer:
-14
Step-by-step explanation:
difference between -20 and -5 = 15
15 x 2/5 = 30/5 = 6
-20 + 6 = -14