Answer:
The sum would be 69109.4944 ml if that's what you were asking
Hey there!:
Molarity of NaOH = 6 M or 6 mol/L
Volume of NaOH = 40 mL
Therefore , number of moles of NaOH:
40 mL =( 6 mol / 1000 mL)*40=
6/ 1000 * 40 => 0.24 moles of NaOH
Hope this helps!
Answer:
Ka = [H₃O⁺] [SO₃²⁻] / [HSO₃⁻]
Kb = [OH⁻] [H₂SO₃] / [HSO₃⁻]
Explanation:
An amphoteric substance as HSO₃⁻ is a substance that act as either an acid or a base. When acid:
HSO₃⁻(aq) + H₂O(l) ⇄ H₃O⁺(aq) + SO₃²⁻(aq)
And Ka, the acid dissociation constant is:
<h3>Ka = [H₃O⁺] [SO₃²⁻] / [HSO₃⁻]</h3><h3 />
When base:
HSO₃⁻(aq) + H₂O(l) ⇄ OH⁻(aq) + H₂SO₃(aq)
And kb, base dissociation constant is:
<h3>Kb = [OH⁻] [H₂SO₃] / [HSO₃⁻]</h3>
Answer:
(1) The sample should not be large, because a large sample would produce a higher and broader mp range.
(2) The rate of heating does not matter.
Explanation:
(1) The sample should not be large, because a large sample would produce a higher and broader mp range, because varying temperature range across the body will lead to inaccurate determination of melting point.
(2) In principle, the melting temperature is INDEPENDENT (not dependent) on the heating rate. so in other words, altering the heating rate does not affect the measure of melting point.
<u>Answer:</u> The weight of water bed in pounds is 1850.16 lb
<u>Explanation:</u>
To calculate the volume of cuboid, we use the equation:

where,
V = volume of cuboid
l = length of cuboid = 210 cm
b = breadth of cuboid = 160 cm
h = height of cuboid = 25 cm
Putting values in above equation, we get:
(Conversion factor:
)
To calculate the mass of waterbed, we use the equation:

Density of waterbed = 
Volume of waterbed =
Putting values in above equation, we get:

Hence, the weight of water bed in pounds is 1850.16 lb