Answer:
2x^2
Step-by-step explanation:
just took the test
Tamam hocam nasılsınız hocam proje konularını da bir insan değilim ki bir şey olmaz ya o yüzden bir insan bir
var ama ben bir insan bir arar
The result of expanding the trigonometry expression
is ![cos^0(\theta) + \cos(\theta) - \cos^2(\theta) - \cos^3(\theta)](https://tex.z-dn.net/?f=cos%5E0%28%5Ctheta%29%20%2B%20%5Ccos%28%5Ctheta%29%20-%20%5Ccos%5E2%28%5Ctheta%29%20-%20%5Ccos%5E3%28%5Ctheta%29)
<h3>How to evaluate the expression?</h3>
The expression is given as:
![\sin^2(\theta) * (1 + \cos(\theta))](https://tex.z-dn.net/?f=%5Csin%5E2%28%5Ctheta%29%20%2A%20%281%20%2B%20%5Ccos%28%5Ctheta%29%29)
Express
as
.
So, we have:
![\sin^2(\theta) * (1 + \cos(\theta)) = (1- \cos^2(\theta)) * (1 + \cos(\theta))](https://tex.z-dn.net/?f=%5Csin%5E2%28%5Ctheta%29%20%2A%20%281%20%2B%20%5Ccos%28%5Ctheta%29%29%20%3D%20%20%281-%20%5Ccos%5E2%28%5Ctheta%29%29%20%2A%20%281%20%2B%20%5Ccos%28%5Ctheta%29%29)
Open the bracket
![\sin^2(\theta) * (1 + \cos(\theta)) = 1 + \cos(\theta) - \cos^2(\theta) - \cos^3(\theta)](https://tex.z-dn.net/?f=%5Csin%5E2%28%5Ctheta%29%20%2A%20%281%20%2B%20%5Ccos%28%5Ctheta%29%29%20%3D%20%201%20%2B%20%5Ccos%28%5Ctheta%29%20-%20%5Ccos%5E2%28%5Ctheta%29%20-%20%5Ccos%5E3%28%5Ctheta%29)
Express 1 as cos°(Ф)
![\sin^2(\theta) * (1 + \cos(\theta)) = cos^0(\theta) + \cos(\theta) - \cos^2(\theta) - \cos^3(\theta)](https://tex.z-dn.net/?f=%5Csin%5E2%28%5Ctheta%29%20%2A%20%281%20%2B%20%5Ccos%28%5Ctheta%29%29%20%3D%20%20cos%5E0%28%5Ctheta%29%20%2B%20%5Ccos%28%5Ctheta%29%20-%20%5Ccos%5E2%28%5Ctheta%29%20-%20%5Ccos%5E3%28%5Ctheta%29)
Hence, the result of expanding the trigonometry expression
is ![cos^0(\theta) + \cos(\theta) - \cos^2(\theta) - \cos^3(\theta)](https://tex.z-dn.net/?f=cos%5E0%28%5Ctheta%29%20%2B%20%5Ccos%28%5Ctheta%29%20-%20%5Ccos%5E2%28%5Ctheta%29%20-%20%5Ccos%5E3%28%5Ctheta%29)
Read more about trigonometry expressions at:
brainly.com/question/8120556
#SPJ1
I hope this is the answer you want
Answer:
<em>Definition 1: The theory, methods, and practice of forming judgments about the parameters of a population and the reliability of statistical relationships, typically on the basis of random sampling.</em>
<em>Definition 2: The use of randomization in sampling allows for the analysis of results using the methods of statistical inference. Statistical inference is based on the laws of probability, and allows analysts to infer conclusions about a given population based on results observed through random sampling. Two of the key terms in statistical inference are parameter and statistic.</em>
Step-by-step explanation:
Hope this helps, have a good day. c;