Well, it depends. If the fathers gene is stronger then you will get his hair color. So the answer is yes.
Answer:
In C4 photosynthesis, where a four-carbon compound is produced, unique leaf anatomy allows carbon dioxide to concentrate in 'bundle sheath' cells around Rubisco. This structure delivers carbon dioxide straight to Rubisco, effectively removing its contact with oxygen and the need for photorespiration
Answer: There's no way one species can become another through depuranization, which is a random change.
Explanation:
In cells, environmental (chemical or physical) and metabolic factors can cause DNA damage, which is the molecule that stores genetic material. In these cases, the damage done to the DNA is repaired.
<u>Many of these lesions cause a permanent structural damage to the DNA, which can alter the ability to be transcribed, or can cause mutated genes to be transcribed resulting in another protein.</u> Particularly, depurination is the hydrolytically cleavage of the β-N-glycosidic bond between the purines (adenosine or guanosine) and the carbon of the sugar group found in the DNA. This mutation results in the loss of the purine base and leads to the formation of apurinic site and results and severely disrupts the DNA structure. The most important causes of depurination is the presence of endogenous metabolites inside the cell as a result of various chemical reactions and due to the presence of mutagenic compounds. However, these apurinic sites <u>are usually repaired by portions of the base excision repair (BER) pathway</u>.
There's no way one species can become another through depuranization, which is a random change. Because it is highly unlikely that 5000 mutations are able to accumulate every day without being repaired, and that they are just the right mutations to have the same characteristics as a chimpanzee. <u>If the depurinations are not repaired, the cell will most likely either die or become cancerous.</u>
Mitosis is the reproduction of cells
The mitochondria is a double membraned organelle, the inner of these membranes is invaginated to form structures called cristae. The fluid inside is called the mitochondrial matrix. The mitochondria has a pivotal role in the creation of ATP in aerobic cellular respiration. Glycolysis occurs outside the mitochondria, producing pyruvate and ATP, the pyruvate endures the link reaction on its way into the mitochondrial matrix and turns into acetyl co enzyme A. This acetyl group is used in the matrix in what is called Krebs cycle, where the oxidation of acetyl groups is coupled with the reduction of hydrogen carriers. The products of Krebs cycle are then transported to the electron transport chain on the cristae where the reduced NADH and FADH are then oxidized. The remaining hydrogen electrons are transported down the chain where an oxygen molecule is reduced to water. Chemiosmosis also occurs at the electron transport chain, in which hydrogen protons move down the concentration gradient (from the inner mitochondrion membrane) through an ATP synthase where ATP is generated. The multiple folds inside the mitochondria which are the cristae, mean that there is plenty of surface area for cellular respirations to occur at.