1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mamaluj [8]
2 years ago
10

Please answer this question, i request

Mathematics
1 answer:
Jet001 [13]2 years ago
3 0

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

You might be interested in
In slope-intercept form, write the equation of the line that passes through points (-7, 8) and (2, -2).
Ymorist [56]

Answer:

y = -1x + 0.5

Step-by-step explanation:

First, I plotted the points (-7, 8) and (2, -2). Then, I drew a line connecting the two points. At the point (-7, 8), I went down 2 squares and to the right 2. This would give me a slope of -1. Since the line touches the y-axis at 0.5, this is the y-intercept.

I am not sure about the y-intercept of this equation. If I got this wrong, I am sorry and please let me know. Thank you!

3 0
3 years ago
Read 2 more answers
Find the area of the figure:  Select one: a. 59.5 yd^2 b. 81 yd^2 c. 58.5 yd^2 d. 55.3 yd^2
lions [1.4K]
Answer would be 58.5 yd^2 .

You should take the base of the triangle multiplied by the height.

Formula: 1/2×base×height

In this case, you know that base is 13yd and height is 9 yd.

So, apply the formula.

Area = 1/2(13yd)(9yd) = 58.5 yd^2

*Do not include the " invisible length as it is not part of the actual triangle.

*Do not include 32yd as it is a hypotenuse and not a base. Hypotenuse is a side that is opposite a right angle triangle.
8 0
3 years ago
2 water taps A B fill a tank in 12 hrs. Tap A takes 10 hrs less than tap B to till tank separately. Find time taken by tap B to
Hatshy [7]

Answer:

11 hours

Step-by-step explanation:

Setting up a system of equations and using the substitution method will give you the number of hours used by each tap.  Let a = time for tap A and b = time for tap B:

a + b = 12  (A and B fill a tank in 12 hours)

a = b - 10 (tap A takes 10 hours less than tap B)

Substitute 'b - 10' for 'a' in the first equation:

b - 10 + b = 12

Combine like terms: 2b - 10 = 12

Add 10 to both sides: 2b - 10 + 10 = 12 + 10 or 2b = 22

Divide by 2: 2b/2 = 22/2

Solve for b: b = 11 hours

5 0
4 years ago
Scott earned 20 points more on his most recent math test than he earned on the previous test. If he earned at least 80 points on
jeyben [28]

Answer:

60

Step-by-step explanation:

80-20=60

8 0
3 years ago
Read 2 more answers
In 2003 Nebraska had a population of 1,739,291 while Kansas had a population of 2,723,507. What was their combined population?
patriot [66]

Answer:

4,452,798

Step-by-step explanation:

Hope this helps

6 0
3 years ago
Other questions:
  • PLEASE PLEASE PLEASE PLEASE PLEASE PLEASE HELP ME!!!!!!!! I HAVE 2 QUESTIONS THATS ALL. I WILL GIVE POINTS, FAN, MEDAL. PLEASE I
    9·1 answer
  • Py+qy=-4y+8 what is the solution for y
    11·2 answers
  • Complete the tasks to subtract the polynomials vertically. (1.3t3 + 0.4t2 – 24t) – (0.6t2 + 8 – 18t) What is the additive invers
    16·2 answers
  • Point B ∈ |AC| so that AB:BC=2:1. Point D ∈ |AB| so that AD:DB=3:2. Find AD:DC
    11·2 answers
  • Evaluate the expression when a=2 and b=20
    6·2 answers
  • Can someone plz help me ty
    6·1 answer
  • In 1990, the cost of tuition at a large Midwestern university was $99 per credit hour. In 2003, tuition had risen to $268 per cr
    11·1 answer
  • 7x-14y=-28<br> 2x+7y=-14
    9·1 answer
  • Graph the equation 4x+8y=16 (pls show ur work)
    10·1 answer
  • (Geometry course question) Explain why it is not possible to construct an equilateral triangle that has
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!