1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mamaluj [8]
2 years ago
10

Please answer this question, i request

Mathematics
1 answer:
Jet001 [13]2 years ago
3 0

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

You might be interested in
Please help asap will give brainliest!!!
Helga [31]
There is a 1/3 chance of the spinner hitting any letter then the next time it would be another 1/3 chance. You multiply these together and get 1/9 but this is not the answer because there is 1/9 of BOTH happening so you add 1/9 plus 1/9 and get 2/9. The answer is 2/9.
7 0
3 years ago
Read 2 more answers
Find the measure of the numbered angle.<br> m∠1 =
kenny6666 [7]

Answer:

<h2>∠1 = 50°</h2><h2 />

Step-by-step explanation:

<u>right triangle.</u>

∠1 = 180 - 90 - 40

∠1 = 50°

4 0
3 years ago
A minor league baseball team plays 128 games a seanson. If the tam won 16 more than three times as many games as they lost how m
tiny-mole [99]

Answer: The team won 100 games and losses 28 games

Step-by-step explanation:

Let the number of games won denoted by x and the games lost is denoted by y .

Given : A minor league baseball team plays 128 games in a season.

Team won 16 more than three times as many games as they lost.

Then, the system of equations, we have

x+y=128-------(1)\\\\x=3y+16------------(2)

We can rewrite equation (2) as x-3y=16----------------(3)

Now, Eliminate equation (3) from (1), we get

y-(-3y)=128-16\\\\\Rightarrow\ 4y=112\\\\\Rightarrow\ y=\dfrac{112}{4}=28

Substitute the value of y in (2), we get

x=3(28)+16=84+16=100

Hence, the team won 100 games and losses 28 games.

7 0
3 years ago
I put a picture
Ksivusya [100]

Answer:

Yes, an arrow can be drawn from 10.3 so the relation is a function.

Step-by-step explanation:

Assuming the diagram on the left is the domain(the inputs) and the diagram on the right is the range(the outputs), yes, an arrow can be drawn from 10.3 and the relation will be a function.

The only time something isn't a function is if two different outputs had the same input. However, it's okay for two different inputs to have the same output.

In this problem, 10.3 is an input. If you drew an arrow from 10.3 to one of the values on the right, 10.3 would end up sharing an output with another input. This is allowed, and the relation would be classified as a function.

However, if you drew multiple arrows from 10.3 to different values on the right, then the relation would no longer be a function because 10.3, a single input, would have multiple outputs.

3 0
3 years ago
Have sum points ;) ;) ;) ;) ;) ;) ;)
OleMash [197]
Ahh thank you so much !! <3
5 0
3 years ago
Read 2 more answers
Other questions:
  • Convert -18° to radians.
    9·2 answers
  • Could anyone help me decipher this alien language????​
    5·1 answer
  • Manuel's division is shown. Manuel did not write the remainder. What is the remainder over the divisor?
    6·1 answer
  • I would appreciate I someone could help me with these questions
    7·1 answer
  • A machinery worth rupees 10,500 depreciated by 5% find its value after one year whom ever gets it will be mark as braniliest​
    7·1 answer
  • Solve the inequality -8x &lt; 32
    15·2 answers
  • What is the length of a diagonal of a cube with a side length of 3 cm?
    8·1 answer
  • Im lost.. whats the answer?
    14·2 answers
  • I really need help plz
    12·1 answer
  • Divide and find quotient<br>(a⁴-b⁴) ÷ (a+b)<br>(step by step explanation)​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!