1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mamaluj [8]
2 years ago
10

Please answer this question, i request

Mathematics
1 answer:
Jet001 [13]2 years ago
3 0

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

You might be interested in
Two airplanes are carrying food and medical supplies to a country in needOne airplane is carrying 63 meals and 51 medical The to
Nonamiya [84]

Answer:374

Step-by-step explanation:

you add them all then get the total

7 0
3 years ago
Omg y'alls! MOre MaTh, and it is the LAST OF IT!
BARSIC [14]

Answer:

non-linear and increasing.

Step-by-step explanation:

We know it is non-linear simply because it is not a straight line. And the numbers in the equations tell us it is increasing not deceasing.

4 0
3 years ago
Read 2 more answers
a coffee shop served 24 people before 7:00am. Two-thirds had decaf, and the remaining ordered a specialty coffee. How many custo
Stolb23 [73]
There were 8 customers who ordered specialty coffee. (24/1 x 1/3 = 8)
5 0
3 years ago
Please Help Me On These Math Questions!!!!! Solve Each System By Elimination
nekit [7.7K]
11) -x + y = -1 ; 2x - y = 0
y = -1 + x ; 2x - (-1+x) = 0 ⇒ 2x + 1 - x = 0 ⇒x = -1 
y = -1 + (-1) ⇒ y = -2

12) -2x + y = -20 ; 2x + y = 48
y = -20 + 2x ; 2x + (-20 + 2x) = 48 ⇒ 2x -20 + 2x = 48 ⇒ 4x = 48 + 20
                      4x = 68 ⇒ x = 68/4 ⇒ x = 17
y = -20 + 2(17) ⇒ y = -20 + 34 ⇒ y = 14

13) 3x -y = -2 ; -2x + y = 3
y = 3 + 2x ; 3x - (3 + 2x) = -2 ⇒ 3x - 3 - 2x = -2 ⇒ x = -2 + 3 ⇒ x = 1
y = 3 + 2(1) ⇒ y = 3 + 2 ⇒ y = 5

14) x - y = 4 ; x - 2y = 10
x = 4 + y ; (4 + y) - 2y = 10 ⇒ 4 + y - 2y = 10 ⇒ 4 - y = 10 
                  ⇒ -y = 10 - 4 ⇒ -y = 6 ⇒  y = -6
x = 4 + (-6) ⇒ x = 4 - 6 ⇒ x = -2

15) x + 2y = 5 ; 3x + 2y = 17
x = 5 - 2y ; 3(5-2y) + 2y = 17 ⇒ 15 - 6y + 2y = 17 ⇒ -4y = 17 - 15
               ⇒ -4y = 2 ⇒ y = -2/4 ⇒ y = -1/2
x = 5 - 2(-1/2) ⇒ x = 5 + 2/2 ⇒ x = 5 + 1 ⇒ x = 6 
5 0
3 years ago
Read 2 more answers
The center of rotation is point P. Which describes the rotation of ΔABC to form ΔA'B'C'?
MrRissso [65]
It's easy what do you think
7 0
3 years ago
Other questions:
  • An object moves on a conveyor belt at a speed of 60 inches per second. Explain how you could conver the speed to feet per minute
    9·1 answer
  • Parallelogram ABCD ​ is a rectangle.
    13·2 answers
  • Convert 60/36 to a mixed number
    10·2 answers
  • KX equals X +4 find a K7
    7·1 answer
  • How to understand piecewise functions
    10·1 answer
  • The value of x is both 5 times as much as the value of y and 36 more than the value y. I know the answer is 9. How can you solve
    8·1 answer
  • Write the verbal sentence as an equation or an inequality: The sum of three and x is ten i really need help plzz help
    11·2 answers
  • Is one side of a rectangular fish tank best represented by a point, line, plane, or ray?
    6·1 answer
  • Please help me aspa <br><br><br><br><br><br>​
    15·1 answer
  • Donnie writes an absolute value equation to determine the values that are 0.8 units from 3.5.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!