1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mamaluj [8]
2 years ago
10

Please answer this question, i request

Mathematics
1 answer:
Jet001 [13]2 years ago
3 0

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

You might be interested in
locate the point on the line segment A (3,-5) and B (13,-15) given that the point is 4/5 of the way from A to B. Show your work
rjkz [21]

Answer:

The coordinates of the point on the line segment between A (3 , -5) and B (13 , -15) given that the point is 4/5 of the way from A to B would be:  (11 , -13)

Step-by-step explanation:

As the line segment has the points:

  • A(3, -5)
  • B(13, -15)

Let (x, y) be the point located on the line segment which is 4/5 of the way from A to B.

Using the formula

x=\frac{x_{1}m_{2}+x_{2}m_{1}}{m_{1}+m_{2}}

y=\frac{y_{1}m_{2}+y_{2}m_{1}}{m_{1}+m_{2}}

Here, the point (x , y) divides the line segment having end points (x₁, y₁) and (x₂, y₂) in the ratio m₁ : m₂ from the point (x₁, y₁).

As (x, y) be the point located on the line segment which is 4/5 of the way from A to B, meaning the distance from A to (x , y) is 4 units, and  the

distance from (x , y) to B is 1 unit, as 5 - 4 = 1.

Thus

m : n = 4 : 1

so

<u>Finding x-coordinate:</u>

x=\frac{x_{1}m_{2}+x_{2}m_{1}}{m_{1}+m_{2}}

x=\frac{\left(3\right)\left(1\right)+\left(13\right)\left(4\right)}{4+1}

\mathrm{Remove\:parentheses}:\quad \left(a\right)=a

x=\frac{3\cdot \:1+13\cdot \:4}{4+1}

x=\frac{55}{4+1}         ∵ 3\cdot \:1+13\cdot \:4=55

x=\frac{55}{5}

\mathrm{Divide\:the\:numbers:}\:\frac{55}{5}=11

x=11

<u></u>

<u>Finding y-coordinate:</u>

y=\frac{y_{1}m_{2}+y_{2}m_{1}}{m_{1}+m_{2}}

y=\frac{\left(-5\right)\left(1\right)+\left(-15\right)\left(4\right)}{4+1}

\mathrm{Remove\:parentheses}:\quad \left(a\right)=a

y=\frac{-5\cdot \:\:1-15\cdot \:\:4}{4+1}

  =\frac{-65}{4+1}            ∵ -5\cdot \:1-15\cdot \:4=-65

  =\frac{-65}{5}

\mathrm{Apply\:the\:fraction\:rule}:\quad \frac{-a}{b}=-\frac{a}{b}

y=-\frac{65}{5}

y=-13

so

  • The x-coordinate = 11
  • The y-coordinate = -13

Therefore, the coordinates of the point on the line segment between A (3 , -5) and B (13 , -15) given that the point is 4/5 of the way from A to B would be:  (11 , -13)

7 0
2 years ago
Write 0.2 as a fraction in simplest form
Artemon [7]

Answer:

1/5

Step-by-step explanation:

2/10 simplified = 1/5

7 0
3 years ago
Read 2 more answers
Prove that 2n^3 + 3n^2 + n is divisible by 6 for every integer n &gt; 1 by mathematical induction. (7 marks)
notka56 [123]

Answer:

The answer is True

Step-by-step explanation:

A <em>mathematical induction</em> consists in only 2 steps:  

<u>First step</u>: Show the proposition is true for the first one valid integer number.

<u>Second step</u>: Show that if any one is true then the next one is true  

Finally, if first step and second step are true, then the complete proposition is true.

So, given 2*n^3+3*n^2+n

First step: using and replacing n=2 (the first valid integer number >1)

2*(2)^3 +3*(2)^2+2=30

\frac{30}{6} =5

As the result is an integer number, so the first step is true.

Second step: using any next number, n+1, let it replace

2*(n+1)^3+3*(n+1)^2+(n+1)\\2*(n^3+3*n^2+3*n+1)+3*(n^2+2*n+1)^2+(n+1)\\2*n^3+6*n^2+6*n+2+3*n^2+6*n+3+n+1\\(2*n^3+3*n^2+n)+(6*n^2+12*n+6)

As the First step is true, we know that

2*n^3+3*n^2+n=6*k,

So let it replace in the previous expression

6*k+6*(n^2+2*n+1)\\6*[k+(n^2+2*n+1)]

Finally

\frac{6*[k+(n^2+2*n+1)]}{6} =k+(n^2+2*n+1)

where the last expression is an integer number

So the second step is true, and the complete proposition is True

5 0
2 years ago
sarithas age is 3 times her sons age. ten years ago he was five times her sons age. find thier present age
Hunter-Best [27]

Answer:

ajiawjsjaoajzbsiwjss

Step-by-step explanation:

nwkqokwwjwowjsbsjws

8 0
3 years ago
Aiden makes 12 bracelets on Monday. He makes 8 more bracelets each day from Tuesday through Thursday. How many bracelets does ai
worty [1.4K]
36 bracelets because, you added 8 more bracelets each days from Tuesday to Thursday so that’s 24 bracelets, than you add 12 and you get 36 bracelets on Friday
8 0
3 years ago
Read 2 more answers
Other questions:
  • The measure of one angle of a triangle is 55 degrees. The measure of the third angle is 20 degrees more than twice the second an
    9·1 answer
  • Rohan has $100 that he wants to save in a bank . Bank A offers two types of savings accounts. One has a 5% simple interest rate,
    9·1 answer
  • Help me with 5 please! Thanks and show work :)
    15·1 answer
  • 13. Summerville has a population of 430,000
    13·1 answer
  • A car can travel 264 miles on 11 gallons of gasoline. How far can it travel on 2<br> gallons?
    10·2 answers
  • I need help with 9 help if you can
    10·1 answer
  • 35 divided by 1 3/4 and 5
    7·1 answer
  • Divide 36 in to the ratio 2 : 3 :1
    13·1 answer
  • Find f(-2) if f(x)= 2x^2-x+5
    8·2 answers
  • eric have rock and classic. the rock is 3 times more than classic. let c represent classic. what the expression for number of ro
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!