1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mamaluj [8]
2 years ago
10

Please answer this question, i request

Mathematics
1 answer:
Jet001 [13]2 years ago
3 0

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

You might be interested in
What is the solution to this equation x+ 3 2/3= 26
jenyasd209 [6]

Answer:

Exact form : x = 67/3

Decimal form : x = 22.33333333333...

Mixed Number form : x = 22 1/3

Step-by-step explanation: Solve for x by simplifying both sides of the equation, then isolating the variable.

I hope this helps you out. :)

5 0
3 years ago
Solve the equation: 3.2/(z-1/2) = 2.667/(z+1/3)
Luden [163]

Answer:

Z = 2489/533

Step-by-step explanation:

I went on photo math and solved it

7 0
3 years ago
Need help please.
soldier1979 [14.2K]

Answer:

78.5%

Step-by-step explanation:

The area of the square is equal to diameter squared

i.e 4 in × 4 in = 16 square inches

The area of the circle is π × r²

i.e π × 2² = 12.56637061

The percent of the time the point will be in the circle = (Area of the circle) ÷ (Area of the square) × 100

i.e \frac{12.56637061}{16} × 100 = 78.53981631%

And is equal to 78.5% (rounded up to the nearest tenth of a percent)

8 0
3 years ago
Please I really need help!! Also show the work please
Natasha_Volkova [10]

Answer:

3x +5+2x+44+110+123+136=360

5x+418=360

c. l. t

5x=58

therefore X=11.5

8 0
3 years ago
Misty, Tina and Jen walk into a store. The manager places his hand on Tina’s shoulder and tells her, “You didn’t win the door pr
vladimir1956 [14]

Answer:

50%

Step-by-step explanation:

3 of them walk into a store, giving her a 33.333% chance of winning. By eliminating one, Tina may as well have never walked into the store, leaving Jen with a 50% chance.

3 0
3 years ago
Other questions:
  • To test the belief that sons are taller than their​ fathers, a student randomly selects 13 fathers who have adult male children.
    15·1 answer
  • Find the sale price. round to two decimal places when necessary.
    5·1 answer
  • A new car has a sticker price of 23950 while the invoice price paid on it was 19750what is tge percentage markup
    11·2 answers
  • How far will you travel if you run for 10 minutes at 2m/sec
    12·1 answer
  • Simplify the following expression (30/45g+20)-(8/9g+7)
    10·1 answer
  • A survey found that 85% of people use
    5·1 answer
  • X+y=10, y+z=14,x+y+z=18. Find the values of x, y, and z
    14·2 answers
  • Shawnda spent $259.20 on a scooter. This was 80% of her budget for a new scooter. How much was the total budget?
    12·1 answer
  • At a used book sale, Ms. Magro see's that 4 comic books cost $5
    14·1 answer
  • When a figure is translated on the coordinate plane you should add or subtract x and y? Is this statement true or false?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!