<span>A chord to a circle is any straight line which starts from one point on the circumference to another. For the given circle, the chords of the circle are AD and BE. Therefore, the correct option from the options is option B.Hope I helped! :) Cheers!</span>
        
             
        
        
        
Answer:
hello : P(A and B) = 3/20
Step-by-step explanation:
events A and B are independent:
P(A and B) = P(A)×P(B) 
P(A and B) = (1/4)×(3/5) 
P(A and B) =3/20
continu ....
P(B/A)= P(A and B) / P(A)
 
        
             
        
        
        
Ratio and Proportions
61:70=ratio of statue
?:22=61:70
?/22=61/70
Move 22 over the equal sign
?=61*22/70
?=1342/70
?=19.1714286 
The tree is 19.1714286m tall
Hope this helps!
        
             
        
        
        
Answer:
Step-by-step explanation:
Equation of line
y = mx + c
m = slope and c is the intercept on y-axis
 
        
             
        
        
        
The answer is:  3.91 inches .
___________________________________________
Note:  Volume of cylinder: V = (base area) * (height);
in which: V = volume = 384 in.³ ;
              h = height = 8 in. ; 
              Base area = area of the base (that is; "circle") = π r² ;
                                         in which; "r" = radius; 
___________________________________________
Solve for "r" :
___________________________________________
 V = π r² * (8 in.) ; 
384 in.³ = (8 in.) * (π r²) ;
___________________________________________
Divide EACH SIDE of the equation by "8" ; 
___________________________________________
 (384 in.³) / 8 = [ (8 in.) * (π r²) in.] / 8 ; 
___________________________________________
 to get: 
___________________________________________
   48 in.³ = (π r²) in.² * in.   ;
___________________________________________
 ↔  (π r²) in.² * in. =  48 in.³  ;  
___________________________________________
Rewrite this equation; using "3.14" as an approximation for: π ;
__________________________________________________
 (3.14 * r²) in.² * in. =  48 in.³ 
_______________________________________
Divide EACH SIDE of the equation by:
"[(3.14)*(in.²)*(in.)]" ;  to isolate "r² " on one side of the equation; 
                                 (since we want to solve for "r") ;
_____________________________________________________
→ [(3.14 * r²) in.² * in.] / [(3.14)*(in.²)*(in.)]  = 48 in.³ / [(3.14)*(in.²)*(in.)] ; 
__________________________________________________
→ to get:   r² = 48/3.14 ;
________________________
      → r² = 15.2866242038216561 ;
_______________________________________
To solve for "r" (the radius; take the "positive square root" of EACH side of the equation:
__________________________________________________
     → +√(r²) = +√(15.2866242038216561)
__________________________________________________
     →  r = 3.9098112747064475286  ; round to 3.91 inches .
___________________________________________________