1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Taya2010 [7]
2 years ago
15

Could someone Help it’s a new topic

Mathematics
2 answers:
mestny [16]2 years ago
8 0
X=36
explanation:
for finding the total angles in a shape you have to follow the formula
(n-2)180
which n is the number of sides
so for a pentagon you will get
3.180=540 and by dividing it into the amount of angles you will get each angle's amount
so
540/5=108 -> each angle
back to the quastion you see the angle C is 108 and we have a triangle
and angles D and B are equal so by subtracting 108 from 180 (total angles in a triangle) we get 72 which is equal to both B and D angles so by dividing it to 2 you will get 36 which is the answer
bagirrra123 [75]2 years ago
7 0

Answer:

So to do this you need a protactor and measure it with it, then add the total

Step-by-step explanation:

You might be interested in
The length of the rectangle is 5 inches more than the width. The perimeter of the rectangle is 42 inches. Write an equation to m
Sunny_sXe [5.5K]

Answer:

<h2>Length = 13 in. </h2>

 Step-by-step explanation:

perimeter of a rectangle (P) = 2L + 2W

where;

P = 42 in.  

Length (L) = 5 + W

Find:

length (L) of the rectangle

solution:

P = 2L + 2W

42 = 2(5 + W) + 2W

42 = 10 + 2W + 2W

42 - 10 = 4W

32 = 4W

W = 32/4

W = 8

Length (L) = 5 + W

                = 5 + 8

                 = 13 in

proof:

42 = 2(13) + 2(8)

42   = 42 in

4 0
3 years ago
Fred and Victoria provide the following proofs for vertical angles to be equal:
mart [117]
Answer should be <span>Both Fred's and Victoria's proofs are correct.</span>
8 0
3 years ago
Read 2 more answers
Solve the equation x-20.7=9.5 for x
kenny6666 [7]
The answer will come out to 30.2
8 0
2 years ago
Read 2 more answers
2067 Supp Q.No. 2a Find the sum of all the natural numbers between 1 and 100 which are divisible by 5. Ans: 1050 ​
Alborosie

5

Answer:

1050

Step-by-step explanation:

Natural Numbers are positive whole numbers. They aren't negative, decimals, fractions. We can just divide 5 into 100 to find how many natural numbers go up to 100 and just add them but that is just to much.

There is a easier method.

<em>E.g</em><em>:</em><em> </em><em> </em><em>Natural</em><em> </em><em>N</em><em>umbers</em><em> </em><em>that</em><em> </em><em>are</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>a</em><em> </em><em>N</em><em>t</em><em>h</em><em> </em><em>Number</em><em>.</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>same</em><em> </em><em>as</em><em> </em><em>adding</em><em> </em><em>t</em><em>h</em><em>e</em><em> </em><em>Nth</em><em> </em><em>Numbers</em><em> </em><em> </em><em>to a</em><em> </em><em>multiple</em><em> </em><em>of</em><em> </em><em>that</em><em> </em><em>Nth</em><em> </em><em>Term</em><em>.</em><em> </em><em>For</em><em> </em><em>example</em><em>,</em><em> </em><em>let</em><em> </em><em>say</em><em> </em><em>we</em><em> </em><em>need</em><em> </em><em>to</em><em> </em><em>find</em><em> </em><em>numbers</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em>.</em><em> </em><em>We</em><em> </em><em>know</em><em> </em><em>that</em><em> </em><em>4</em><em> </em><em>is</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em> </em><em>because</em><em> </em><em>4</em><em>/</em><em>2</em><em>=</em><em>2</em><em>.</em><em> </em><em> </em><em>We</em><em> </em><em>can</em><em> </em><em>add</em><em> </em><em>the</em><em> </em><em>Nth</em><em> </em><em>numbers</em><em> </em><em>which</em><em> </em><em>is</em><em> </em><em>2</em><em> </em><em>to</em><em> </em><em>4</em><em>.</em><em> </em><em>4</em><em>+</em><em>2</em><em>=</em><em>6</em><em>.</em><em> </em><em>And</em><em> </em><em>6</em><em> </em><em>is</em><em> </em><em>divisible</em><em> </em><em>by</em><em> </em><em>2</em><em> </em><em>because</em><em> </em><em>6</em><em>/</em><em>2</em><em>=</em><em>3</em><em>.</em><em> </em><em>We</em><em> </em><em>can</em><em> </em><em>call</em><em> </em><em>this</em><em> </em><em>a</em><em> </em><em>arithmetic</em><em> </em><em>series</em><em>.</em><em> </em><em>A</em><em> </em><em>series</em><em> </em><em>which</em><em> </em><em>has</em><em> </em><em>a</em><em> </em><em>pattern</em><em> </em><em>of</em><em> </em><em>adding</em><em> </em><em>a</em><em> </em><em>common</em><em> </em><em>difference</em>

<em>Back</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>problem</em><em>,</em><em> </em><em>we</em><em> </em><em>can</em><em> </em><em>use</em><em> </em><em>the</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>arithmetic</em><em> </em><em>series</em><em> </em><em>formula</em><em>,</em>

<em>y = x( \frac{z {}^{1}  +  {z}^{n} }{2} )</em>

<em>Where</em><em> </em><em>x</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>number</em><em> </em><em>of</em><em> </em><em>terms</em><em> </em><em>in</em><em> </em><em> </em><em>our</em><em> </em><em>sequence</em><em>.</em><em> </em><em>Z1</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>fist</em><em> </em><em>term</em><em> </em><em>of</em><em> </em><em>our</em><em> </em><em>series</em><em>.</em><em> </em><em> </em><em>ZN</em><em> </em><em>is</em><em> </em><em>our</em><em> </em><em>last</em><em> </em><em>term</em><em>.</em><em> </em><em>And</em><em> </em><em>y</em><em> </em><em>is</em><em> </em><em>the</em><em> </em><em>sum</em><em> </em><em>of</em><em> </em><em>all</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>terms</em><em> </em>

<em>The</em><em> </em><em>first</em><em> </em><em>term</em><em> </em><em>is</em><em> </em><em>5</em><em>,</em><em> </em><em>the</em><em> </em><em>numbers</em><em> </em><em>of</em><em> </em><em>terms</em><em> </em><em>being</em><em> </em><em>added</em><em> </em><em>is</em><em> </em><em>2</em><em>0</em><em> </em><em>because</em><em> </em><em>1</em><em>0</em><em>0</em><em>/</em><em>5</em><em>=</em><em>2</em><em>0</em><em>.</em><em> </em><em>The</em><em> </em><em>last</em><em> </em><em>term</em><em> </em><em>is</em><em> </em><em>1</em><em>0</em><em>0</em><em>.</em>

<em>y = 20( \frac{5 + 100}{2} )</em>

<em>y = 20( \frac{105}{2} )</em>

<em>y = 1050</em>

5 0
2 years ago
Solve for the equation 3x-7y=-28 for y
Stels [109]
The answer is y=3x/7 +4
7 0
3 years ago
Read 2 more answers
Other questions:
  • 6TH GRADE HELP!! Describe the similarities and differences between primary and secondary sources. In two sentences.
    9·2 answers
  • Triangle JKL is a right triangle. What is the length of JK?
    12·2 answers
  • Which expression represents five times the quotient of two numbers
    14·1 answer
  • 9d + 4 = 2d + 53<br> Can someone tell me what d stands for?
    14·1 answer
  • Malik borrowed $105 from his brother and plans to repay $12 per week. He creates a table to help him determine the
    8·1 answer
  • ......................................................
    11·1 answer
  • 20 POINTS!!!
    13·1 answer
  • Oliver saves pennies and he saves the same number of pennies each week. His father gave him a jar of pennies to get him started.
    13·1 answer
  • A cube has an edge length of 21 cm. What is the volume?
    14·2 answers
  • Directions: Write the expression for each sentence below.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!