1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Zigmanuir [339]
3 years ago
7

What is (625/2401)^1/4

Mathematics
2 answers:
Mars2501 [29]3 years ago
7 0
The answer as a decimal is 0.06507705122

Hope this helps!
jek_recluse [69]3 years ago
5 0
The answer to that question is 0.065
 
You might be interested in
If 3 is subtracted from 5 times a number, the result is the same as 9 added to the number. Find the number.
Nataly_w [17]

Answer:

c).3

Step-by-step explanation:

let the number be x

5x-3=x+9

collect like terms

5x-x=9+3

4x= 12

divide both sides by 4

x=3

the number is 3

3 0
2 years ago
After 5 minutes of a basketball game
astra-53 [7]

Answer:

Something happens...

Step-by-step explanation:

7 0
4 years ago
Read 2 more answers
4 2/3 ÷ 7 to the lowest terms ​
exis [7]

Answer:

4 2/3 divided by 7. You can do 14/3 by making it an improper fraction. Then you can do 14/3 divided by 7/1.

(LCR) 14/3 * 1/7 = 14/21.

Simplify by 7.

14 divided by 7 is 2.

21 divided by 7 is 3.

The answer is 2/3!

8 0
3 years ago
15.30 find the inverse laplace transform of: 1. (a) f1(s) = 6s 2 8s 3 s(s 2 2s 5) 2. (b) f2(s) = s 2 5s 6 (s 1) 2 (s 4) 3. (c) f
EleoNora [17]

The solution of the inverse Laplace transforms is mathematically given as

  • f_{1}(t)=e^{-t}\sin (2 t)
  • f_{2}(t)=\frac{7}{9} e^{-t}+\frac{2}{3} e^{-t}+\frac{2}{9} e^{-4 t}
  • f_{3}(t)=2 e^{-t}-2 e^{-2 t} \cos (2 t)-e^{-2 t} \sin (2 t)

<h3>What is  the inverse Laplace transform?</h3>

1)

Generally, the equation for the function is  mathematically given as

$F_{1}(s)=\frac{6 s^{2}+8 s+3}{s\left(s^{2}+2 s+5\right)}$

By Applying the Partial fractions method

\frac{6 s^{2}+8 s+3}{s\left(s^{2}+2 s+5\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+2 s+5}

$6 s^{2}+8 s+3=A\left(s^{2}+2 s+5\right)+(B s+C) s$

\begin{aligned}&3=5 A \\&A=\frac{3}{5}\end{aligned}

Considers s^2 coefficient

\begin{aligned}&6=A+B \\&B=6 \cdot A \\&B=\frac{27}{5}\end{aligned}

Consider s coeffici ent

\begin{aligned}&8=2 A+C \\&C=8-2 A \\&C=\frac{34}{5}\end{aligned}

Putting these values into the previous equation

&F_{1}(s)=\frac{3}{5 s}+\frac{27 s+34}{5\left(s^{2}+2 s+5\right)} \\\\&F_{1}(s)=\frac{3}{5 s}+\frac{27(s+1)}{5\left((s+1)^{2}+4\right)}+\frac{7 \times 2}{10\left((s+1)^{2}+4\right)}

By taking Inverse Laplace Transforms

f_{1}(t)=\frac{3}{5}+\frac{27}{5} e^{-t} \cos (2t) + \frac{7}{10}\\\\

f_{1}(t)=e^{-t}\sin (2 t)

For B

$F_{2}(s)=\frac{s^{2}+5 s+6}{(s+4)(s+1)^{2}}$

By Applying Partial fractions method

\begin{aligned}&\frac{s^{2}+5 s+6}{(s+4)(s+1)^{2}}=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s+4} \\\\&s^{2}+5 s+6=A(s+1)(s+4)+B(s+4)+C(s+1)^{2}\end{aligned}

at s=-1

1-5+6=3 B \\\\B=\frac{2}{3}

at s=-4

&16-20+6=9 C \\\\&9 C=2 \\\\&C=\frac{2}{9}

at s^2 coefficient

1=A+C

A=1-C

A=7/9

inputting Variables into the Previous Equation

\begin{aligned}&F_{2}(s)=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s+4} \\&F_{2}(s)=\frac{7}{9(s+1)}+\frac{2}{3(s+1)^{2}}+\frac{2}{9(s+4)}\end{aligned}

By taking Inverse Laplace Transforms

f_{2}(t)=\frac{7}{9} e^{-t}+\frac{2}{3} e^{-t}+\frac{2}{9} e^{-4 t}

For C

$F_{3}(s)=\frac{10}{(s+1)\left(s^{2}+4 s+8\right)}$

Using the strategy of Partial Fractions

\frac{10}{(s+1)\left(s^{2}+4 s+8\right)}=\frac{A}{s+1}+\frac{B s+C}{s^{2}+4 s+8}

10=A\left(s^{2}+4 s+8\right)+(B s+C)(s+1)

S=-1

10=(1-4+8) A

A=10/5

A=2

Consider constants

10=8 A+C

C=10-8 A

C=10-16

C=-6

Considers s^2 coefficient

0=A+B

B=-A

B=-2

inputting Variables into the Previous Equation

&F_{3}(s)=\frac{2}{s+1}+\frac{-2 s-6}{\left((s+2)^{2}+4\right)} \\\\&F_{3}(s)=\frac{2}{s+1}-\frac{2(s+2)}{\left((s+2)^{2}+4\right)}-\frac{2}{\left((s+2)^{2}+4\right)}

Inverse Laplace Transforms

f_{3}(t)=2 e^{-t}-2 e^{-2 t} \cos (2 t)-e^{-2 t} \sin (2 t)

Read more about Laplace Transforms

brainly.com/question/14487937

#SPJ4

3 0
2 years ago
Honors Algebra II &amp; Trig
Keith_Richards [23]

Answer:

The answer to your question is:  f(g(1)) = \sqrt{8}

Step-by-step explanation:

Data

f(x) = \sqrt{6- x}

g(x) = 5x - 7

find: (fog)(1)

f(g(x)) = \sqrt{6- 5x + 7}

f(g(x)) = \sqrt{13 -5x}

f(g(1)) = \sqrt{13 - 5(1)}

f(g(1)) = \sqrt{8}

3 0
3 years ago
Other questions:
  • An = cos(npi/2). If convergent find limit of sequence?
    13·1 answer
  • Complete the statement: Cosine is the reciprocal of the ___________ ratio.
    8·1 answer
  • 1/3(6x-12)=8(1/2x+1)-2
    13·1 answer
  • PLSSSSSSSSS HEELP
    6·1 answer
  • Ok if Dan made 1412.42 and Aaron made 1187.92
    5·1 answer
  • Solve for x. 85+5x-10=11x+3
    6·1 answer
  • PLIS HELPPP I DON'T UNDERSTAND THIS
    7·2 answers
  • the table show the costs of a large cheese pizza with toppings at local pizzeria. graph the date and find the slope ​
    8·1 answer
  • Help please………………………
    14·1 answer
  • Write an algebraic expression for the word phase.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!