Answer:
89414,89416,89418
Step-by-step explanation:
Let n bet the positive integer and then 2n is an even integer because multiplying n with 2 makes it an even integer.
Now, 2n+2, 2n+4 are the next integers.
Therefore, three consecutive integers are: 2n, 2n+2, 2n+4.
It is given that twice the first integer added to the second is 268,244 that means:




Therefore, three consecutive integers are:
2n=89414, 2n+2=89416, 2n+4=89418
<span>0 is a natural number, which is part of the rational numbers.</span>
Sadly, after giving all the necessary data, you forgot to ask the question.
Here are some general considerations that jump out when we play with
that data:
<em>For the first object:</em>
The object's weight is (mass) x (gravity) = 2 x 9.8 = 19.6 newtons
The force needed to lift it at a steady speed is 19.6 newtons.
The potential energy it gains every time it rises 1 meter is 19.6 joules.
If it's rising at 2 meters per second, then it's gaining 39.2 joules of
potential energy per second.
The machine that's lifting it is providing 39.2 watts of lifting power.
The object's kinetic energy is 1/2 (mass) (speed)² = 1/2(2)(4) = 4 joules.
<em>For the second object:</em>
The object's weight is (mass) x (gravity) = 4 x 9.8 = 39.2 newtons
The force needed to lift it at a steady speed is 39.2 newtons.
The potential energy it gains every time it rises 1 meter is 39.2 joules.
If it's rising at 3 meters per second, then it's gaining 117.6 joules of
potential energy per second.
The machine that's lifting it is providing 117.6 watts of lifting power.
The object's kinetic energy is 1/2 (mass) (speed)² = 1/2(4)(9) = 18 joules.
If you go back and find out what the question is, there's a good chance that
you might find the answer here, or something that can lead you to it.
Answer:

Step-by-step explanation:
Let
and
. Now we evaluate the given function at
:
(1)



Which means that
is less than the y-component of A. Therefore, the right answer is
.
Given:
A fourth-degree polynomial function has zeros 4, -4, 4i , and -4i .
To find:
The fourth-degree polynomial function in factored form.
Solution:
The factor for of nth degree polynomial is:

Where,
are n zeros of the polynomial.
It is given that a fourth-degree polynomial function has zeros 4, -4, 4i , and -4i. So, the factor form of given polynomial is:


![[\because a^2-b^2=(a-b)(a+b)]](https://tex.z-dn.net/?f=%5B%5Cbecause%20a%5E2-b%5E2%3D%28a-b%29%28a%2Bb%29%5D)
On further simplification, we get

![[\because i^2=-1]](https://tex.z-dn.net/?f=%5B%5Cbecause%20i%5E2%3D-1%5D)
Therefore, the required fourth degree polynomial is
.