Answer:
11 meters
Step-by-step explanation:
First, we can say that the square has a side length of x. The perimeter of the square is 4x, and that is how much wire goes into the square. To maximize the area, we should use all the wire possible, so the remaining wire goes into the triangle, or (11-4x).
The area of the square is x², and the area of an equilateral triangle with side length a is (√3/4)a². Next, 11-4x is equal to the perimeter of the triangle, and since it is equilateral, each side has (11-4x)/3 length. Plugging that in for a, we get the area of the equilateral triangle is
(√3/4)((11-4x)/3)²
= (√3/4)(11/3 - 4x/3)²
= (√3/4)(121/9 - 88x/9 + 16x²/9)
= (16√3/36)x² - (88√3/36)x + (121√3/36)
The total area is then
(16√3/36)x² - (88√3/36)x + (121√3/36) + x²
= (16√3/36 + 1)x² - (88√3/36)x + (121√3/36)
Because the coefficient for x² is positive, the parabola would open up and the derivative of the parabola would be the local minimum. Therefore, to find the maximum area, we need to go to the absolute minimum/maximum points of x (x=0 or x=2.75)
When x=0, each side of the triangle is 11/3 meters long and its area is
(√3/4)a² ≈ 5.82
When x=2.75, each side of the square is 2.75 meters long and its area is
2.75² = 7.5625
Therefore, a maximum is reached when x=2.75, or the wire used for the square is 2.75 * 4 = 11 meters