I would say take 2 from eight which equals 6
Answer:
Standard Form: y = 4(x-1)(x+5)
Step-by-step explanation:
4 is the leading coefficient, so it should go in front. When making a standard quadratic equation, you must do the opposite for each of the roots (negative to positive, positive to negative.)
if you’re asking for a general form quadratic equation, then sorry, I am unable to help you with that :(
Answer:
Answer is 6(3 d+2)
Step-by-step explanation:
It is given the expression as 18d+12
Let's find common factor by prime factoring the terms.
18 d =2*3*3*d
12= 2*2*3
Common factors for both terms are 2, 3.
So, G C F = 2*3=6
Take out 6 from both terms to factor further.
We do get 6(3 d+2)
Answer:

Step-by-step explanation:
We can write
as follows:
![\frac{11s}{s^2-12s+52}\\=11\left [ \frac{s}{s^2-12s+52} \right ]\\=11\left [ \frac{s}{(s-6)^2+16} \right ]\\=11\left [ \frac{s-6+6}{(s-6)^2+16} \right ]\\=11\left [ \frac{s-6}{(s-6)^2+16} \right ]+\frac{66}{(s-6)^2+16}](https://tex.z-dn.net/?f=%5Cfrac%7B11s%7D%7Bs%5E2-12s%2B52%7D%5C%5C%3D11%5Cleft%20%5B%20%5Cfrac%7Bs%7D%7Bs%5E2-12s%2B52%7D%20%5Cright%20%5D%5C%5C%3D11%5Cleft%20%5B%20%5Cfrac%7Bs%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%5C%5C%3D11%5Cleft%20%5B%20%5Cfrac%7Bs-6%2B6%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%5C%5C%3D11%5Cleft%20%5B%20%5Cfrac%7Bs-6%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%2B%5Cfrac%7B66%7D%7B%28s-6%29%5E2%2B16%7D)
To find:
![L^{-1}\left [ \frac{11s}{s^2-12s+52 \right ]}\\=L^{-1}\left [ 11\left [ \frac{s-6}{(s-6)^2+16} \right ]+\frac{66}{(s-6)^2+16} \right ]](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5Cleft%20%5B%20%5Cfrac%7B11s%7D%7Bs%5E2-12s%2B52%20%5Cright%20%5D%7D%5C%5C%3DL%5E%7B-1%7D%5Cleft%20%5B%2011%5Cleft%20%5B%20%5Cfrac%7Bs-6%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%2B%5Cfrac%7B66%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D)
We will use formulae:

we get solution as :
![L^{-1}\left [ 11\left [ \frac{s-6}{(s-6)^2+16} \right ]+\frac{66}{(s-6)^2+16} \right ]\\=L^{-1}\left [ 11\left [ \frac{s-6}{(s-6)^2+4^2} \right ]+\frac{66}{4}\left [ \frac{4}{(s-6)^2+4^2} \right ] \right ]\\=11e^{6t}\cos 4t+\frac{33}{2}e^{6t}\sin 4t](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5Cleft%20%5B%2011%5Cleft%20%5B%20%5Cfrac%7Bs-6%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%2B%5Cfrac%7B66%7D%7B%28s-6%29%5E2%2B16%7D%20%5Cright%20%5D%5C%5C%3DL%5E%7B-1%7D%5Cleft%20%5B%2011%5Cleft%20%5B%20%5Cfrac%7Bs-6%7D%7B%28s-6%29%5E2%2B4%5E2%7D%20%5Cright%20%5D%2B%5Cfrac%7B66%7D%7B4%7D%5Cleft%20%5B%20%5Cfrac%7B4%7D%7B%28s-6%29%5E2%2B4%5E2%7D%20%5Cright%20%5D%20%5Cright%20%5D%5C%5C%3D11e%5E%7B6t%7D%5Ccos%204t%2B%5Cfrac%7B33%7D%7B2%7De%5E%7B6t%7D%5Csin%204t)
The first thing we must know is the following definition:
d = v * t
Where,
d: distance
v: speed
t: time
Therefore, the total distance traveled in this case is:
(5.5) * (0.5) + (1.5) * p = 13.25
Rewriting:
2.75 + 1.5p = 13.25
Clearing the value of p we have:
p = (13.25-2.75) / (1.5)
p = 7
Answer:
an equation representing this situation is:
2.75 + 1.5p = 13.25
DeAngelo's rate for the last 1.5 hours of his run is 7 miles per hour