Answer: A. 90° clockwise, E. 270° Counterclockwise
Answer:A
Step-by-step explanation:
Answer:
9/20
Step-by-step explanation:
Answer:
The ship S is at 10.05 km to coastguard P, and 12.70 km to coastguard Q.
Step-by-step explanation:
Let the distance of the ship to coastguard P be represented by x, and its distance to coastguard Q be represented by y.
But,
<P = 048°
<Q =
- 
= 0
Sum of angles in a triangle = 
<P + <Q + <S = 
048° + 0
+ <S = 
+ <S = 
<S =
- 
= 
<S = 
Applying the Sine rule,
=
= 
= 
= 
= 
⇒ y = 
= 12.703
y = 12.70 km
= 
= 
= 
⇒ x = 
= 10.0475
x = 10.05 km
Thus,
the ship S is at a distance of 10.05 km to coastguard P, and 12.70 km to coastguard Q.
<h3>The distance between two landmarks is 123 meters</h3>
<em><u>Solution:</u></em>
We have to find the distance between two landmarks
<em><u>Use the law of cosines</u></em>
The third side of a triangle can be found when we know two sides and the angle between them

Here, angle between 90 meters and 130 meters is 65 degrees
From figure,
a = 90
b = 130
c = d
Therefore,

Thus, the distance between two landmarks is 123 meters