1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex73 [517]
2 years ago
15

Pls help me with my math

Mathematics
1 answer:
givi [52]2 years ago
8 0

Answer:

The definition for the given piecewise-defined function is:   \boxed{\displaystyle\sf\ Option\:D:\:\: f(x) = \begin{cases}\displaystyle\sf\ x + 2 & \sf\:{if\:\:x \leq -1} \\\displaystyle\sf\ 2x + 4 & \sf\:{if\:\:x > -1}\end{cases}}.

Step-by-step explanation:

<h3>General Concepts:</h3>
  • Piecewise-defined functions.
  • Interval notations.

<h3>What is a piecewise-defined function?</h3>

A piecewise-defined function represents specific rules over different intervals of the domain.  

<h3>Symbols used in expressing interval notations:</h3>

Open interval: This means that the endpoint is <em>not</em> included in the interval.

We can use the following symbols to indicate the <u>exclusion</u> of endpoints in the interval:

  • Left or right parenthesis, "(  )" (or both).
  • Greater than (>) or less than (<) symbols.
  • Open dot "\circ" is another way of expressing the exclusion of an endpoint in the graph of a piecewise-defined function.

Closed interval: This implies the inclusion of endpoints in the interval.

We can use the following symbols to indicate the <u>inclusion</u> of endpoints in the interval:

  • Open- or closed brackets (or both), "[  ]."
  • Greater than or equal to (≥) or less than or equal to (≤) symbols.
  • Closed circle or dot, "•" is another way of expressing the <em>inclusion</em> of the endpoint in the graph of a piecewise-defined function.  

<h2>Determine the appropriate function rule that defines different parts of the domain.  </h2>

The best way to determine which piecewise-defined function represents the graph is by observing the <u>endpoints</u> and <u>orientation</u> of both partial lines.

  • Open circle on (-1, 2):  The graph shows that one of the partial lines has an <em>excluded</em> endpoint of (-1, 2) extending towards the <u>right</u>. This implies that its domain values are defined when x > -1.
  • Closed circle on (-1, 1): The graph shows that one of the partial lines has an <em>included</em> endpoint of (-1, 1) extended towards the <u>left</u>. Hence,  its domain values are defined when x ≤ -1.

Based on our observations from the previous step, we can infer that x > -1 or x ≤ -1 apply to piecewise-defined functions A or D. However, only one of those two options represent the graph.

<h2>Solution:</h2><h3>a) Test option A:</h3>

    \boxed{\displaystyle\sf Option\:A)\:\:\:f(x) = \begin{cases}\displaystyle\sf\ 2x + 2 & \sf\:{if\:\:x \leq -1} \\\displaystyle\sf\ x + 4 & \sf\:{if\:\:x > -1}\end{cases}}

<h3>Piece 1: If x ≤ -1, then it is defined by f(x) = 2x + 2. </h3>

We must choose a domain value that falls within the interval of x ≤ -1 whose output is included is included in the graph of the partial line with a <u>closed dot</u>.

Substitute x = -2 into f(x) = 2x + 2:  

  • f(x) = 2x + 2
  • f(-2) = 2(-2) + 2
  • f(-2) = -4 + 2
  • f(-2) = -2  ⇒  <em>False statement</em>.

⇒ The output value of f(-2) = -2 is <u>not</u> included in the graph of the partial line whose endpoint is at (-1, 1).

<h3>Piece 2: If x > -1, then it is defined by f(x) = x + 4. </h3>

We must choose a domain value that falls within the interval of x > -1 whose output is included in the graph of the partial line with an <u>open dot</u>.

Substitute x = 0 into  f(x) = x + 4:

  • f(x) = x + 4
  • f(0) = (0) + 4
  • f(0) = 4  ⇒  <em>True statement</em>.

⇒ The output value of f(0) = 4 <u>is</u> included in the graph of the partial line whose endpoint is at (-1, 2).

Conclusion for Option A:

Option A is not the correct piecewise-defined function because one of the pieces, f(x) = 2x + 2, does not specify the interval (-∞, -1].

<h3>b) Test option D:</h3>

    \boxed{\displaystyle\sf Option\:D)\:\:\:f(x) = \begin{cases}\displaystyle\sf\ x + 2 & \sf\:{if\:\:x \leq -1} \\\displaystyle\sf\ 2x + 4 & \sf\:{if\:\:x > -1}\end{cases}}

<h3>Piece 1:  If x ≤ -1, then it is defined by f(x) = x + 2. </h3>

We must choose a domain value that falls within the interval of x ≤ -1 whose output is included is included in the graph of the partial line with a <u>closed dot</u>.

Substitute x = -2 into f(x) = x + 2:

  • f(x) = x + 2
  • f(-2) = (-2) + 2
  • f(-2) = 0  ⇒  <em>True statement</em>.

⇒ The output value of f(-2) = 0 <u>is</u> included the graph of the partial line whose endpoint is at (-1, 1).

<h3>Piece 2: If x > -1, then it is defined by f(x) = 2x + 4.</h3>

We must choose a domain value that falls within the interval of x > -1 whose output is included is included in the graph of the partial line with an <u>open dot</u>.

Substitute x = 0 into f(x) = 2x + 4:

  • f(x) = 2x + 4
  • f(0) = 2(0) + 4
  • f(0) = 0 + 4 = 0  ⇒  <em>True statement</em>.

⇒ The output value of f(0) = 4 <u>is</u> included in the graph of the partial line whose endpoint is at (-1, 2).  

<h2>Final Answer: </h2>

We can infer that the piecewise-defined function that represents the graph is:

\boxed{\displaystyle\sf\ Option\:D:\:\: f(x) = \begin{cases}\displaystyle\sf\ x + 2 & \sf\:{if\:\:x \leq -1} \\\displaystyle\sf\ 2x + 4 & \sf\:{if\:\:x > -1}\end{cases}}.

________________________________________

Learn more about piecewise-defined functions here:

brainly.com/question/26145479

You might be interested in
Use properties to evaluate 7/5(1/4 divide 7/4)(-10)
cricket20 [7]
The answer isssssss c -2
3 0
3 years ago
Identify the function as a power function, a polynomial function, or neither.<br><br> f(x)=4(x^3)^3
Alborosie

Answer:7

Step-by-step explanation:7

7 0
3 years ago
The distance between two cities on a map is 10 in. The actual distance between the cities is 135. What is the scale on the map?
spayn [35]
The scale on the map is 1 in = 13.5 units


135/10 = 13.5
4 0
3 years ago
If f(x)=5x, what is f^-1(x)?
Georgia [21]

Answer:

first thing to do is get up from your sit and go cry because that question is to hard

5 0
3 years ago
F(x)=-x^2+8x-11 find the value of f(-1)-f(1)
IrinaVladis [17]

Answer: The answer is (4,5)

Step-by-step explanation:

5 0
3 years ago
Other questions:
  • Which polygons are congruent?<br> Select each correct answer.
    12·2 answers
  • Number 5 all letters anyone? due tomorrow at 8 am
    5·1 answer
  • What are four consecutive integers whose sum is 682
    15·2 answers
  • FIND INVERSE OF Y=3X+9/7
    10·1 answer
  • Please i need help with this 3 questions (#5,6,7)<br><br><br> Thank you
    10·1 answer
  • 6 inches edgesof what's the volume of jewelry box
    11·1 answer
  • What is the answer to x/3-2=7
    11·1 answer
  • Which model shows 1/4 divided by 3 ? A B C D
    7·1 answer
  • HELP I NEED HELP ASAP
    8·1 answer
  • Evaluate 4x + y for x = 5 and y = 4 *<br> please help
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!