Explanation:
Efficiency is defined as the ratio between the useful output over the total amount consumed. 
The fan does 500W of useful work while wasting 300 W. The total power consumption is 800 W (500 + 300).
During that period of time, the bird's displacement was 4 km east. So its velocity was (4km east)/(11hrs). That's 0.36 km/hour east. (rounded)
Answer:
the density of mobile electrons in the material is 3.4716 × 10²⁵ m⁻³
Explanation:
Given the data in the question;
we make use of the following expression;
hall Voltage VH = IB / ned
where I = 2.25 A
B = 0.685 T
d = 0.107 mm = 0.107 × 10⁻³ m
e = 1.602×10⁻¹⁹ C
VH = 2.59 mV = 2.59 × 10⁻³ volt
n is the electron density
so from the form; VH = IB / ned
VHned = IB
n = IB / VHed
so we substitute
n = (2.25 × 0.685) / ( 2.59 × 10⁻³ × 1.602×10⁻¹⁹ × 0.107 × 10⁻³ )
n = 1.54125 / 4.4396226 × 10⁻²⁶
n = 3.4716 × 10²⁵ m⁻³
Therefore, the density of mobile electrons in the material is 3.4716 × 10²⁵ m⁻³
6 meters is left because you subtract 12 meters from 6
Answer: 0.006in/s
Explanation:
Let the rate at which air is being blown into a spherical balloon be dV/dt which is 1.68in³/s
Also let the rate at which the radius of the balloon is increasing be dr/dt
Given r = 4.7in and Π = 3.14
Applying the chain rule method
dV/dt = dV/dr × dr/dt
If the volume of the sphere is 4/3Πr³
V = 4/3Πr³
dV/dr = 4Πr²
If r = 4.7in
dV/dr = 4Π(4.7)²
dV/dr = 277.45in²
Therefore;
1.68 = 277.45 × dr/dt
dr/dt = 1.68/277.45
dr/dt = 0.006in/s