I think this is the solution:
1: U-1, F,-4
2: Na-6, Mo-1, O-4
3: Bi-1, O-1, C-1, I-1
4: In-9, N-1
5: N-2, H-4, S-1, C-1
6: Ge- 15, N-4
7: N-1, H-4, C-1, I-1, O-3
8: H-7, F-1
9: N-1, O-5, H-1, S-1
10: H-8
11: Nb-1, O-1, C-1, I-3
12: C-3, F-3, S-1, O-3, H-1
13: Ag-1, C-1, N-1, O-1
14: Pb-6, H-1, As-1, O-4
Answer:
a) 200A
b) 10.2V
c) 2.04kW
d)
I=80A
V=4.08V
P=0.326kW
Explanation:
Here we have a circuit of one power source and two resistors in series, the first question is asking for the current, so according to Ohm's Law:

Where R is the equivalent resistance of the resistors in series
![R=0.0510+0.0090=0.0600[ohm]](https://tex.z-dn.net/?f=R%3D0.0510%2B0.0090%3D0.0600%5Bohm%5D)

To calculate the voltage dropped by the motor we have to apply the voltage divider rule:

The power dissipated supplied to the motor is given by:

now solving adding a 0.0900 ohm resistor:



El beneficio que obtuvo es de 2 L
Answer:
A
Explanation:
If the object is moving at a constant speed, the object isn't accelerating as the velocity doesn't change.
Answer:
vector quantities are resolved into their component form (along the x and y-axis) before adding them. Let us assume that two vectors are
→
a
=
x
1
^
i
+
y
1
^
j
and
→
b
=
x
2
^
i
+
y
2
^
j
, we can find the sum of two vectors as follows.
→
a
+
→
b
=
x
1
^
i
+
y
1
^
j
+
x
2
^
i
+
y
2
^
j
=
(
x
1
+
x
2
)
^
i
+
(
y
1
+
y
2
)
^
j
The direction of the sum of the vectors (with positive x-axis) is,
θ
=
tan
−
1
(
y
1
+
y
2
x
1
+
x
2
)