For each of these problems, remember SOH-CAH-TOA.
Sine = opposite/hypotenuse
Cosine = adjacent/hypotenuse
Tangent = opposite/adjacent
5) Here we are looking for the cosine of the 30 degree angle. Cosine uses the adjacent side to the angle over the hypotenuse. Therefore, cos(30) = 43/50.
6) We have an unknown side length, of which is adjacent to 22 degrees, and the length of the hypotenuse. Since we know the adjacent side and the hypotenuse, we should use Cosine. Therefore, our equation to find the missing side length is cos(22) = x / 15.
7) When finding an angle, we always use the inverse of the trigonometry function we originally used. Therefore, if sin(A) = 12/15, then the inverse of that would be sin^-1 (12/15) = A.
8) We are again using an inverse trigonometry function here. We know the hypotenuse, as well as the side adjacent to the angle. Therefore, we should use the inverse cosine function. Using the inverse cosine function gives us cos^-1 (9/13) = 46 degrees.
Hope this helps!
Part percent
—— = ————. I use that method a lot and it helped me. ANSWER:65%
Whole 100
Answer:
<h3> C. y + 7 = -7(x - 3)</h3>
Step-by-step explanation:
The equation of a line is:
y - y₀ = m(x - x₀)
where <em>m</em> is the slope and <em>(x₀, y₀)</em> is the point which the line passes through
The product of slopes of two perpendicular lines is -1
so if given lines slope is ¹/₇ them:
¹/₇·m = -1
m = -7
(3, -7) ⇒ x₀ = 3, y₀ = -7
Therefore:
y - (-7) = -7(x - 3)
<u> </u><u>y + 7 = -7(x - 3) </u>
$55-$35=20
$20 divide by $0.25=80 miles.
therefore denise can drive the car for 1day 80 miles to stay within her budget