Step-by-step explanation:
since packages are similarsimilar packages. The ratio of the volumes is 8:125. Determine the dimensions of the bigger package. The dimensions of the smaller package are... Height= 45cm, Length= 80cm, and Width= 25cm.
Length of bigger package = <em><u>8</u></em><em><u>0</u></em><em><u>×</u></em><em><u>1</u></em><em><u>2</u></em><em><u>5</u></em><em><u>/</u></em><em><u>8</u></em><em><u>=</u></em><em><u>1</u></em><em><u>2</u></em><em><u>5</u></em><em><u>0</u></em><em><u>c</u></em><em><u>m</u></em>
Width of bigger package =<em><u>2</u></em><em><u>5</u></em><em><u>×</u></em><em><u>1</u></em><em><u>2</u></em><em><u>5</u></em><em><u>/</u></em><em><u>8</u></em><em><u>=</u></em><em><u>3</u></em><em><u>9</u></em><em><u>0</u></em><em><u>.</u></em><em><u>6</u></em><em><u>2</u></em><em><u>5</u></em><em><u>c</u></em><em><u>m</u></em>
Height of bigger package =<em><u>4</u></em><em><u>5</u></em><em><u>×</u></em><em><u>1</u></em><em><u>2</u></em><em><u>5</u></em><em><u>/</u></em><em><u>8</u></em><em><u>=</u></em><em><u>7</u></em><em><u>0</u></em><em><u>3</u></em><em><u>.</u></em><em><u>1</u></em><em><u>2</u></em><em><u>5</u></em><em><u>cm</u></em>
2y*3x+46
3x+46=2y
(3x+46)/2=y
3/2x+23=y
y=3/2x+23
Move all terms not containing
|
5
−
8
x
|
|
5
-
8
x
|
to the right side of the inequality.
Tap for fewer steps...
Add
7
7
to both sides of the inequality.
|
5
−
8
x
|
<
8
+
7
|
5
-
8
x
|
<
8
+
7
Add
8
8
and
7
7
.
|
5
−
8
x
|
<
15
|
5
-
8
x
|
<
15
Remove the absolute value term. This creates a
±
±
on the right side of the inequality because
|
x
|
=
±
x
|
x
|
=
±
x
.
5
−
8
x
<
±
15
5
-
8
x
<
±
15
Set up the positive portion of the
±
±
solution.
5
−
8
x
<
15
5
-
8
x
<
15
Solve the first inequality for
x
x
.
Tap for more steps...
x
>
−
5
4
x
>
-
5
4
Set up the negative portion of the
±
±
solution. When solving the negative portion of an inequality, flip the direction of the inequality sign.
5
−
8
x
>
−
15
5
-
8
x
>
-
15
Solve the second inequality for
x
x
.
Tap for more steps...
x
<
5
2
x
<
5
2
Set up the intersection.
x
>
−
5
4
x
>
-
5
4
and
x
<
5
2
x
<
5
2
Find the intersection between the sets.
−
5
4
<
x
<
5
2
-
5
4
<
x
<
5
2
The result can be shown in multiple forms.
Inequality Form:
−
5
4
<
x
<
5
2
-
5
4
<
x
<
5
2
Interval Notation:
(
−
5
4
,
5
2
)
(
-
5
4
,
5
2
)
The triangles are congruent due to SAS
Answer:
3 is your answer im pretty sure:)))
Step-by-step explanation: