C(x) = 400 + 20x - 0.2x²
c(30) = 400 + 20(30) - 0.2(30)²
= 400 + 600 - 0.2(900)
= 1000 - 180
= 820
It costs $820 when 30 radios are produced.
Marginal cost is how much it would cost to make one MORE of the same product so now we find how much it costs to produce 31 radios and compare the two.
c(31) = 400 + 20(31) - 0.2(31)²
= 400 + 620 - 0.2(961)
= 1020 - 192.2
= 827.8 or ≈828.
Now we find the difference which means we subtract the two.
828 - 820 = 8.
Your marginal cost is $8.
To compare we can also do 29 radios.
c(29) = 400 + 20(29) - 0.2(29)² = 811.8 or ≈812
820 - 812 = 8.
Answer:
x= 1
Step-by-step explanation:
Solve
Let's solve your equation step-by-step.
4x−2=2x
Step 1: Subtract 2x from both sides.
4x−2−2x=2x−2x
2x−2=0
Step 2: Add 2 to both sides.
2x−2+2=0+2
2x=2
Step 3: Divide both sides by 2.
2x
2
=
2
2
x=1
<span>Simplifying
(6a + -8b)(6a + 8b) = 0
Multiply (6a + -8b) * (6a + 8b)
(6a * (6a + 8b) + -8b * (6a + 8b)) = 0
((6a * 6a + 8b * 6a) + -8b * (6a + 8b)) = 0
Reorder the terms:
((48ab + 36a2) + -8b * (6a + 8b)) = 0
((48ab + 36a2) + -8b * (6a + 8b)) = 0
(48ab + 36a2 + (6a * -8b + 8b * -8b)) = 0
(48ab + 36a2 + (-48ab + -64b2)) = 0
Reorder the terms:
(48ab + -48ab + 36a2 + -64b2) = 0
Combine like terms: 48ab + -48ab = 0
(0 + 36a2 + -64b2) = 0
(36a2 + -64b2) = 0
Solving
36a2 + -64b2 = 0
Solving for variable 'a'.
Move all terms containing a to the left, all other terms to the right.
Add '64b2' to each side of the equation.
36a2 + -64b2 + 64b2 = 0 + 64b2
Combine like terms: -64b2 + 64b2 = 0
36a2 + 0 = 0 + 64b2
36a2 = 0 + 64b2
Remove the zero:
36a2 = 64b2
Divide each side by '36'.
a2 = 1.777777778b2
Simplifying
a2 = 1.777777778b2
Take the square root of each side:
a = {-1.333333333b, 1.333333333b}</span>
Answer:
$555,765.76
Step-by-step explanation:
1
2
4
8
16
32
64
128
256
512
1024
2048
4096
8192
16282
32564
65128
13256
26512
53024
106048
212096
424192
868384
1736768
3473536
6947072
13894144
27788288
55576576=
555,765.76
Answer:
x= 4
y= -5
Step-by-step explanation:
-2x+6y=-38 equation 1
3x-4y=32 equation 2
using equation 1 we have:
-2x+6y=-38
6y +38 = 2x
3y + 19 = x equation 3
using equation 3 in equation 2 we have:
3(3y + 19) - 4y = 32
9y + 57 -4y =32
5y = 32 -57
5y = -25
y= -25/5
y = -5
so we have:
3y + 19 = x
3(-5) +19 = x
x= 4