The given statement is:
An integer is divisible by 100 if and only if its last two digits are zeros
The two conditional statements that can be made are:
1) If an integer is divisible by 100 its last two digits are zeros.
This is a true statement. If a number is divisible by 100, it means 100 must be a factor of that number. When 100 will be multiplied by the remaining factors, the number will have last two digits zeros.
2) If the last two digits of an integer are zeros, it is divisible by 100.
This is also true. If last two digits are zeros, this means 100 is a factor of the integer. So the number will be divisible by 100.
Therefore, the two conditional statements that are formed are both true.
So, the option A is the correct answer.
Yes, it is. When the definition is separated into two conditional statements, both of the statements are true
Please, use parentheses to enclose each fraction:
y=3/4X+5 should be written as <span>y=(3/4)X+5
Let's eliminate the fraction 3/4 by multiplying the above equation through by 4:
4[y] = 4[(3/4)x + 5]
Then 4y = 3x + 20
(no fraction here)
Let 's now solve the system
4y=3x + 20
4x-3y=-1
We are to solve this system using subtraction. To accomplish this, multiply the first equation by 3 and the second equation by 4. Here's what happens:
12y = 9x + 60 (first equation)
16x-12y = -4, or -12y = -4 - 16x (second equation)
Then we have
12y = 9x + 60
-12y =-16x - 4
If we add here, 12y-12y becomes zero and we then have 0 = -7x + 56.
Solving this for x: 7x = 56; x=8
We were given equations
</span><span>y=3/4X+5
4x-3y=-1
We can subst. x=8 into either of these eqn's to find y. Let's try the first one:
y = (3/4)(8)+5 = 6+5=11
Then x=8 and y=11.
You should check this result. Subst. x=8 and y=11 into the second given equation. Is this equation now true?</span>
Answer:
Is B i just did it on khan
The answer is B that is beacuse you see the pasta on the side take your time look closly 1 have tomato on Pasta side so B is the only correct answer.
The conversion is 9*9=81
The conversion is true