1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesya692 [45]
1 year ago
15

your dog gets fed 2/5 of a cup of food each day, your cat gets fed 2/3 of what your dog gets fed, how much do you feed your cat?

Mathematics
1 answer:
konstantin123 [22]1 year ago
8 0
2/3 cup of food = 134g
You might be interested in
Express ln 32 - ln 8 as a single natural logarithm
ivanzaharov [21]
\bf \textit{Logarithm of rationals}
\\\\
log_a\left(  \frac{x}{y}\right)\implies log_a(x)-log_a(y)\\\\
-------------------------------\\\\
ln(32)-ln(8)\implies ln\left( \frac{32}{8} \right)\implies ln(4)
8 0
3 years ago
Read 2 more answers
Someone please explain this it’s confusing me.
Nesterboy [21]

Answer:

x = 4 radical 3 / 3

Step-by-step explanation:

this is a 30-60-90 triangle

the side across from the angle 30 is L

the side across from the angle 60 is L√3

the side across from the angle 90 is 2L

we are given the side across from 60⁰ so we know that:

2 = L√3

we want to solve for L, so we must divide both sides by √3 (radical three)

2/√3 = L√3/√3

you would get 2/ √3 = L, because the radical three cancels out on the L side.

but you can't have a radical in the denominator, so you have to multiply 2/√3 by radical 3

2 times √3 and √3 times √3

you get 2√3/√9

radical nine can simplify

2radical3/3 or 2√3/3

we found L, but that would equal the thirty degree angle, not the 90, 90 = 2L

multiply the number infront of the radical by two and get

4√3/3

x=4 radical 3 divided by 3

5 0
2 years ago
Find the exact length of the curve. x=et+e−t, y=5−2t, 0≤t≤2 For a curve given by parametric equations x=f(t) and y=g(t), arc len
Rama09 [41]

The length of a curve <em>C</em> parameterized by a vector function <em>r</em><em>(t)</em> = <em>x(t)</em> i + <em>y(t)</em> j over an interval <em>a</em> ≤ <em>t</em> ≤ <em>b</em> is

\displaystyle\int_C\mathrm ds = \int_a^b \sqrt{\left(\frac{\mathrm dx}{\mathrm dt}\right)^2+\left(\frac{\mathrm dy}{\mathrm dt}\right)^2} \,\mathrm dt

In this case, we have

<em>x(t)</em> = exp(<em>t</em> ) + exp(-<em>t</em> )   ==>   d<em>x</em>/d<em>t</em> = exp(<em>t</em> ) - exp(-<em>t</em> )

<em>y(t)</em> = 5 - 2<em>t</em>   ==>   d<em>y</em>/d<em>t</em> = -2

and [<em>a</em>, <em>b</em>] = [0, 2]. The length of the curve is then

\displaystyle\int_0^2 \sqrt{\left(e^t-e^{-t}\right)^2+(-2)^2} \,\mathrm dt = \int_0^2 \sqrt{e^{2t}-2+e^{-2t}+4}\,\mathrm dt

=\displaystyle\int_0^2 \sqrt{e^{2t}+2+e^{-2t}} \,\mathrm dt

=\displaystyle\int_0^2\sqrt{\left(e^t+e^{-t}\right)^2} \,\mathrm dt

=\displaystyle\int_0^2\left(e^t+e^{-t}\right)\,\mathrm dt

=\left(e^t-e^{-t}\right)\bigg|_0^2 = \left(e^2-e^{-2}\right)-\left(e^0-e^{-0}\right) = \boxed{e^2-\frac1{e^2}}

5 0
2 years ago
If the length of a rectangle is 4.3 feet and its width is 2.7 feet what is its are and its perimeter
Dvinal [7]
The area is 11.61 square feet and the perimeter is 14 feet. i hope this helps :)

Area=Length times width

Perimeter=Length+Length+width+width
7 0
3 years ago
Read 2 more answers
Mystery Boxes: Breakout Rooms
ollegr [7]

Answer:

\begin{array}{ccccccccccccccc}{1} & {3} & {4} & {12} & {15} & {18}& {18 } & {26} & {29} & {30} & {32} & {57} & {58} & {61} \\ \end{array}

Step-by-step explanation:

Given

\begin{array}{ccccccccccccccc}{1} & {[ \ ]} & {4} & {[ \ ] } & {15} & {18}& {[ \ ] } & {[ \ ]} & {29} & {30} & {32} & {[ \ ]} & {58} & {[ \ ]} \\ \end{array}

Required

Fill in the box

From the question, the range is:

Range = 60

Range is calculated as:

Range =  Highest - Least

From the box, we have:

Least = 1

So:

60 = Highest  - 1

Highest = 60 +1

Highest = 61

The box, becomes:

\begin{array}{ccccccccccccccc}{1} & {[ \ ]} & {4} & {[ \ ] } & {15} & {18}& {[ \ ] } & {[ \ ]} & {29} & {30} & {32} & {[ \ ]} & {58} & {61} \\ \end{array}

From the question:

IQR = 20 --- interquartile range

This is calculated as:

IQR = Q_3 - Q_1

Q_3 is the median of the upper half while Q_1 is the median of the lower half.

So, we need to split the given boxes into two equal halves (7 each)

<u>Lower half:</u>

\begin{array}{ccccccc}{1} & {[ \ ]} & {4} & {[ \ ] } & {15} & {18}& {[ \ ] } \\ \end{array}

<u>Upper half</u>

<u></u>\begin{array}{ccccccc}{[ \ ]} & {29} & {30} & {32} & {[ \ ]} & {58} & {61} \\ \end{array}<u></u>

The quartile is calculated by calculating the median for each of the above halves is calculated as:

Median = \frac{N + 1}{2}th

Where N = 7

So, we have:

Median = \frac{7 + 1}{2}th = \frac{8}{2}th = 4th

So,

Q_3 = 4th item of the upper halves

Q_1= 4th item of the lower halves

From the upper halves

<u></u>\begin{array}{ccccccc}{[ \ ]} & {29} & {30} & {32} & {[ \ ]} & {58} & {61} \\ \end{array}<u></u>

<u></u>

We have:

Q_3 = 32

Q_1 can not be determined from the lower halves because the 4th item is missing.

So, we make use of:

IQR = Q_3 - Q_1

Where Q_3 = 32 and IQR = 20

So:

20 = 32 - Q_1

Q_1 = 32 - 20

Q_1 = 12

So, the lower half becomes:

<u>Lower half:</u>

\begin{array}{ccccccc}{1} & {[ \ ]} & {4} & {12 } & {15} & {18}& {[ \ ] } \\ \end{array}

From this, the updated values of the box is:

\begin{array}{ccccccccccccccc}{1} & {[ \ ]} & {4} & {12} & {15} & {18}& {[ \ ] } & {[ \ ]} & {29} & {30} & {32} & {[ \ ]} & {58} & {61} \\ \end{array}

From the question, the median is:

Median = 22 and N = 14

To calculate the median, we make use of:

Median = \frac{N + 1}{2}th

Median = \frac{14 + 1}{2}th

Median = \frac{15}{2}th

Median = 7.5th

This means that, the median is the average of the 7th and 8th items.

The 7th and 8th items are blanks.

However, from the question; the mode is:

Mode = 18

Since the values of the box are in increasing order and the average of 18 and 18 do not equal 22 (i.e. the median), then the 7th item is:

7th = 18

The 8th item is calculated as thus:

Median = \frac{1}{2}(7th + 8th)

22= \frac{1}{2}(18 + 8th)

Multiply through by 2

44 = 18 + 8th

8th = 44 - 18

8th = 26

The updated values of the box is:

\begin{array}{ccccccccccccccc}{1} & {[ \ ]} & {4} & {12} & {15} & {18}& {18 } & {26} & {29} & {30} & {32} & {[ \ ]} & {58} & {61} \\ \end{array}

From the question.

Mean = 26

Mean is calculated as:

Mean = \frac{\sum x}{n}

So, we have:

26= \frac{1 + 2nd + 4 + 12 + 15 + 18 + 18 + 26 + 29 + 30 + 32 + 12th + 58 + 61}{14}

Collect like terms

26= \frac{ 2nd + 12th+1 + 4 + 12 + 15 + 18 + 18 + 26 + 29 + 30 + 32 + 58 + 61}{14}

26= \frac{ 2nd + 12th+304}{14}

Multiply through by 14

14 * 26= 2nd + 12th+304

364= 2nd + 12th+304

This gives:

2nd + 12th = 364 - 304

2nd + 12th = 60

From the updated box,

\begin{array}{ccccccccccccccc}{1} & {[ \ ]} & {4} & {12} & {15} & {18}& {18 } & {26} & {29} & {30} & {32} & {[ \ ]} & {58} & {61} \\ \end{array}

We know that:

<em>The 2nd value can only be either 2 or 3</em>

<em>The 12th value can take any of the range 33 to 57</em>

Of these values, the only possible values of 2nd and 12th that give a sum of 60 are:

2nd = 3

12th = 57

i.e.

2nd + 12th = 60

3 + 57 = 60

So, the complete box is:

\begin{array}{ccccccccccccccc}{1} & {3} & {4} & {12} & {15} & {18}& {18 } & {26} & {29} & {30} & {32} & {57} & {58} & {61} \\ \end{array}

6 0
2 years ago
Other questions:
  • What is 10.39-4.28 rounding estimated to
    7·1 answer
  • Explain how you can use place-value patterns to describe how 50 and 5,000 compare.
    11·1 answer
  • Describe the transformation.
    14·1 answer
  • Please answer this question !! 20 points and brainliest !!
    15·1 answer
  • Triangle has an area of ten square meters. The height of the triangle is 5 meters what is the base of the triangle
    11·1 answer
  • Hi guys what is 6 divided by 2(1+2 )
    12·1 answer
  • Someone plzzz help asap! Will give brainliest and a lot of points. Pls give a clear answer and show work. You are the best thank
    7·2 answers
  • Which what is the correct expanded form and value of 4^3
    14·2 answers
  • Which of the following are true? Select all that apply.
    12·2 answers
  • Which of the following could be appropriate values for an equation to be in standard form
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!