1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inna [77]
2 years ago
10

Find the exact value of the expression.

Mathematics
2 answers:
Tresset [83]2 years ago
6 0

\sin(a-b)=\sin a \cos b-\cos a \sin b. If we let a=\cos^{-1} \left(\frac{5}{6} \right) and b=\tan^{-1} \left(\frac{1}{2} \right), then the given expression is equal to:

\sin \left(\cos^{-1} \left(\frac{5}{6}} \right) \right) \cos \left(\tan^{-1} \left(\frac{1}{2} \right) \right)-\cos\left(\cos^{-1} \left(\frac{5}{6} \right) \right) \sin \left( \tan^{-1} \left(\frac{1}{2} \right) \right)

Using the Pythagorean identities \sin^{2} x+\cos^{2} x=1 and \tan^{2} x+1=\sec^{2} x,

1) \sin^{2} \left(\cos^{-1} \left(\frac{5}{6} \right) \right)+\cos^{2}  \left(\cos^{-1} \left(\frac{5}{6} \right) \right)=1\\\sin^{2} \left(\cos^{-1} \left(\frac{5}{6} \right) \right)+\frac{25}{36}=1\\\sin^{2} \left(\cos^{-1} \left(\frac{5}{6} \right) \right)=\frac{11}{36}\sin \left(\cos^{-1} \left(\frac{5}{6} \right) \right)=\frac{\sqrt{11}}{6}

2) \tan^{2} \left(\tan^{-1} \left(\frac{1}{2} \right) \right)+1=\sec^{2} \left(\tan^{-1} \left(\frac{1}{2} \right) \right)\\\frac{1}{4}+1=\sec^{2} \left(\tan^{-1} \left(\frac{1}{2} \right) \right)\\\frac{5}{4}=\sec^{2} \left(\tan^{-1} \left(\frac{1}{2} \right) \right)\\\sec \left(\tan^{-1} \left(\frac{1}{2} \right) \right)=\frac{\sqrt{5}}{2}\\\implies \cos \left(\tan^{-1} \left(\frac{1}{2} \right) \right)=\frac{2}{\sqrt{5}}=\frac{2\sqrt{5}}{5}

\cos^{2} \left(\tan^{-1} \left(\frac{1}{2} \right) \right)+\sin^{2} \left(\tan^{-1} \left(\frac{1}{2} \right) \right)=1\\\frac{4}{5}+\sin^{2} \left(\tan^{-1} \left(\frac{1}{2} \right) \right)=1\\\sin^{2} \left(\tan^{-1} \left(\frac{1}{2} \right) \right)=\frac{1}{5}\\\left(\tan^{-1} \left(\frac{1}{2} \right) \right)=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}

This means we can write the original expression as:

\left(\frac{\sqrt{11}}{6} \right) \left(\frac{2\sqrt{5}}{5} \right)-\left(\frac{5}{6} \right) \left(\frac{\sqrt{5}}{5} \right)\\=\frac{2\sqrt{11}\sqrt{5}}{30}-\frac{5\sqrt{5}}{30}\\=\boxed{\frac{\sqrt{5}(2\sqrt{11}-5)}{30}}

Aleksandr-060686 [28]2 years ago
6 0

Step-by-step explanation:

let

a =   \cos {}^{ - 1} ( \frac{5}{6} )

b =  \tan {}^{  -  1} ( \frac{1}{2} )

\sin(a - b)  =  \sin(a)  \cos(b)  -  \cos(a)  \sin(b)

Substitute

\sin( \cos {}^{ - 1} ( \frac{5}{6} ) )  \cos( \tan {}^{ - 1} ( \frac{1}{2} ) )  -  \cos( \cos {}^{ - 1} ( \frac{5}{6} ) )  \sin( \tan {}^{ - 1} ( \frac{1}{2} ) )

\frac{ \sqrt{11} }{6}  \frac{2}{ \sqrt{5} }  -  \frac{5}{6}  \frac{1}{ \sqrt{5} }

\frac{ \sqrt{11} }{6}  \frac{ 2\sqrt{5} }{5}  -  \frac{5 \sqrt{5} }{30}

\frac{ 2\sqrt{11}  \sqrt{5} - 5 \sqrt{5}  }{30}

\frac{ \sqrt{5} (2 \sqrt{11}  - 5)}{30}

You might be interested in
For a repeated-measures study comparing two treatments with 12 scores in each treatment, what is the df value for the t statisti
marishachu [46]

The degree of freedom for t statistic is 11.

According to the given question.

For a repeated-measure study, comparing two treatments with 12 scores in each treatment .

So, we can say that sample size, n = 12.

We know that, when you have a sample and estimate the mean, we have

n – 1 degrees of freedom, where n is the sample size.

Therefore,

The degree of freedom for the given sample test will be

d.f = n -1

⇒ d.f = 12 - 1

⇒ d.f = 11

Hence, the degree of freedom for t statistic is 11.

Find out more informaion about degree of freedom for sample test here:

brainly.com/question/24188394

#SPJ4

3 0
2 years ago
To qualify for a police academy, applicants are given a test of physical fitness. The scores are normally distributed with a mea
djyliett [7]

Answer:

X₀ = 71.65

Step-by-step explanation:

given,

mean (μ ) = 64

standard deviation (σ) = 9

                                 σ²  = 81

selected candidate are top 20 % candidate

P( X > X₀)  = 0.2

P( Z > \dfrac{X_0-\mu}{\sigma}) = 0.2

P( Z > \dfrac{X_0-64}{9})= 0.2

P( Z > Z₀)  = 0.2

Z_0 = 0.85 = \dfrac{X_0-64}{9}

X₀ = 71.65

Hence, the cut off score is equal to X₀ = 71.65

6 0
3 years ago
Please help ASAP 30 pts + brainliest to right/best answer
Delicious77 [7]

When adding two together multiply:

log2 6 + log2 2 = log2(6*2) = log2 12

When you subtract 2 logs, divide:

So you have log2 12 / log2 8

Rewrite as log2 12/8

Simplify to get log2 3/2

The answer is C.

4 0
4 years ago
Read 2 more answers
What is 604,000,000 expressed in scientific notation?
pantera1 [17]
Its either A sorry if im wrong
6 0
3 years ago
Read 2 more answers
What is 125% written as a fraction and a decimal
mihalych1998 [28]
125% as a fraction would be 125/100, which you can simplify to 5/4, or 1 1/4.
125% as a decimal would be 1.25, because you would do the sum 125 ÷ 100 = 1.25

I hope this helps!
5 0
3 years ago
Read 2 more answers
Other questions:
  • Whatistheslopeofthegraphofy
    11·1 answer
  • Jean mixed 3 1/3 qt of yellow paint and 2 1/3 qt of blue paint to make green paint
    10·2 answers
  • the width of the rectangle is 5 inches less than it's length, and the area is 84 square inches. what are the length and width of
    9·1 answer
  • I'm in need of help please
    12·1 answer
  • Express the complex number in trigonometric form.<br><br> -6 + 6\sqrt(3) i
    8·1 answer
  • What is the slope given two points: (-4.7) and (-6, -4)
    9·1 answer
  • Who like gta5..... answer me "yes" if like this game.. and follow me..... ok friends.​
    5·1 answer
  • The function h(t) = - 16t2 + 48t + 160 can be used to model the height, in feet, of an object t
    12·1 answer
  • PLEASE HELP Which function equation represents a line that
    10·2 answers
  • Please help me with the question below
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!