1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nadusha1986 [10]
2 years ago
7

What is the approximate solution to this equation? 15(3)^2x=90

Mathematics
1 answer:
mel-nik [20]2 years ago
7 0

Answer:

x ≈ 0.67

Step-by-step explanation:

15(3)^2x = 90\\\\15(9)x = 90\\\\135x = 90\\\\x = 90/135\\\\ x = 2/3\\\\x = 0.666...\\\\x = 0.67 \ (rounded \ to \ nearest \ hundredth )

You might be interested in
Which inequality represents all possible solutions of −6n<−12?
muminat

Answer:

B n>2

Step-by-step explanation:

−6n<−12

Divide each side by -6, remembering to flip the inequality

-6n/-6 > -12/-6

n >2

5 0
3 years ago
Find the perimeter of the polygon with the vertices A(-1,1), B(4,1), C(4, - 2), and D(-1, -2).
ipn [44]

Answer:A

Step-by-step explanation:

i have done it before

8 0
3 years ago
Lim n-&gt; infinity [1/3 + 1/3² + 1/3³ + . . . .+ 1/3ⁿ]​
Verizon [17]

Answer:

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]

Let we first evaluate

\rm :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }

Its a Geometric progression with

\rm :\longmapsto\:a = \dfrac{1}{3}

\rm :\longmapsto\:r = \dfrac{1}{3}

\rm :\longmapsto\:n = n

So, Sum of n terms of GP series is

\rm :\longmapsto\:S_n = \dfrac{a(1 -  {r}^{n} )}{1 - r}

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{1 - \dfrac{1}{3} } \bigg]

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{3 - 1}{3} } \bigg]

\rm :\longmapsto\:S_n = \dfrac{1}{3} \bigg[\dfrac{1 -  {\bigg[\dfrac{1}{3} \bigg]}^{n} }{\dfrac{2}{3} } \bigg]

\bf\implies \:S_n = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

<u>Hence, </u>

\bf :\longmapsto\:\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} } = \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

<u>Therefore, </u>

\purple{\rm :\longmapsto\:\displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]}

\rm \:  =  \: \displaystyle\lim_{n \to  \infty }\rm \dfrac{1}{2}\bigg[1 - \dfrac{1}{ {3}^{n} } \bigg]

\rm \:  =  \: \rm \dfrac{1}{2}\bigg[1 - 0 \bigg]

\rm \:  =  \: \rm \dfrac{1}{2}

<u>Hence, </u>

\purple{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{n \to  \infty }\rm \bigg[\dfrac{1}{3} + \dfrac{1}{ {3}^{2} }  + \dfrac{1}{ {3}^{3} }  +  -  -  + \dfrac{1}{ {3}^{n} }  \bigg]} =  \frac{1}{2}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

<h3><u>Explore More</u></h3>

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1}}

\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga}}

8 0
3 years ago
Order the following expressions by their values from least to greatest.<br> Please help me!
kolezko [41]

Answer:

L, K, J

Step-by-step explanation:

hope this helps :)

3 0
3 years ago
Read 2 more answers
2x – 6y = 5
Juli2301 [7.4K]

Answer:

The answer to your question is This system of equations can not be solved. They do not cross.

Step-by-step explanation:

                               2x - 6y = 5             ----- (I)

                                 x - 3y = -12           ----- (II)

I.- Solve equation II for x

                                x = 3y - 12             ------ (III)

2.- Substitute equation III on equation I

                            2(3y - 12) - 6y = 5

3.- Expand

                            6y - 24 - 6y = 5

                            6y - 6y = 5 + 24

                                    0 = 29

This system of equations can not be solved.

5 0
4 years ago
Other questions:
  • List the descriptors used to interpret a scatterplot and provide a brief explanation for each
    8·1 answer
  • What is the next number in the sequence? 7….10….16….28…
    9·1 answer
  • How do you solve this?
    12·2 answers
  • the pitch of a roof is the number of feet the roof rises for each 12 feet horizontally if a roof has a pitch of 8,what is the sl
    6·1 answer
  • What is the degree of the following polynomial? 9 - x ^ 2 + 2x ^ 5 - 7x
    12·1 answer
  • Write an equation in slope-intercept form for the following line:<br> (-14.1) and (13,-2)
    7·1 answer
  • 3) Which of the following describes a
    6·1 answer
  • Jack brought a new set of golf clubs of $186.75. The original price was $249. What percent of the original price did he pay?
    6·2 answers
  • Alisha bought some new clothes. She spent $110 on shoes and a total of $200. What percentage of her spending was on shoes?
    5·1 answer
  • please help I'm actually crying! Find A and B if the graph of Ax + By = 7 passes through (2,1) and is parallel to the graph of 2
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!