Let
denote the rocket's position, velocity, and acceleration vectors at time
.
We're given its initial position

and velocity

Immediately after launch, the rocket is subject to gravity, so its acceleration is

where
.
a. We can obtain the velocity and position vectors by respectively integrating the acceleration and velocity functions. By the fundamental theorem of calculus,


(the integral of 0 is a constant, but it ultimately doesn't matter in this case)

and



b. The rocket stays in the air for as long as it takes until
, where
is the
-component of the position vector.

The range of the rocket is the distance between the rocket's final position and the origin (0, 0, 0):

c. The rocket reaches its maximum height when its vertical velocity (the
-component) is 0, at which point we have


5x + 6 + (-7x - 4)
5x + 6 - 7x - 4
-2x + 2
Answer:
do you go to garcia middle school 9 feet is the answer
Step-by-step explanation:
Answer:
A. Initially, there were 12 deer.
B. <em>N(10)</em> corresponds to the amount of deer after 10 years since the herd was introducted on the reserve.
C. After 15 years, there will be 410 deer.
D. The deer population incresed by 30 specimens.
Step-by-step explanation:

The amount of deer that were initally in the reserve corresponds to the value of N when t=0


A. Initially, there were 12 deer.
B. 
B. <em>N(10)</em> corresponds to the amount of deer after 10 years since the herd was introducted on the reserve.
C. 
C. After 15 years, there will be 410 deer.
D. The variation on the amount of deer from the 10th year to the 15th year is given by the next expression:
ΔN=N(15)-N(10)
ΔN=410 deer - 380 deer
ΔN= 30 deer.
D. The deer population incresed by 30 specimens.