Answer:A) SQS
Explanation: Simple Queue Service (SQS) is Amazon based service that deals in queue that decouples the micro-services infrastructure or applications.It has the benefit of maintaining of the security, eliminating complexity, transmitting the data reliably etc.
It also provides the service of the storing the message, storing it and other functioning without the integrity in its security or any other resource need.Thus, option(a) is the correct option.
Answer:
C
Explanation:
This job will have the largest amount of 1. computer programmers, 2. like-minded coworkers, and 3. a large number of like-minded coworkers.
Please give Brainliest if accurate!
Answer:
It is the ALU or the Arithmetic Logic Unit.
Explanation:
It is the ALU. However, keep in mind that registers and buses do a very important task. The number of registers we have, faster is the processing, and the opposite is true as well. And there is a reason behind this if we have different channels for sending and receiving the data from the memory, and several registers for storing the data, and we can formulate the requirement seeing the requirements for full adder and half adders. Remember we need to store several variables in case of the full adder, and which is the carry, and if we have separate registers for each of them, our task becomes easier. Remember its the CU that tells the ALU what operation is required to be performed. Also remember we have the same channel for input and output in the case of Van Neumann architecture, as we have a single bus. and we also have a single shared memory. And Harvard architecture is an advanced version of it.
The answer would be true.
The first thing we are going to do is find the equation of motion:
ωf = ωi + αt
θ = ωi*t + 1/2αt^2
Where:
ωf = final angular velocity
ωi = initial angular velocity
α = Angular acceleration
θ = Revolutions.
t = time.
We have then:
ωf = (7200) * ((2 * pi) / 60) = 753.60 rad / s
ωi = 0
α = 190 rad / s2
Clearing t:
753.60 = 0 + 190*t
t = 753.60 / 190
t = 3.97 s
Then, replacing the time:
θ1 = 0 + (1/2) * (190) * (3.97) ^ 2
θ1 = 1494.51 rad
For (10-3.97) s:
θ2 = ωf * t
θ2 = (753.60 rad / s) * (10-3.97) s
θ2 = 4544,208 rad
Number of final revolutions:
θ1 + θ2 = (1494.51 rad + 4544.208 rad) * (180 / π)
θ1 + θ2 = 961.57 rev
Answer:
the disk has made 961.57 rev 10.0 s after it starts up