Answer:
2.28% probability that a person selected at random will have an IQ of 110 or higher
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

What is the probability that a person selected at random will have an IQ of 110 or higher?
This is 1 subtracted by the pvalue of Z when X = 110. So



has a pvalue of 0.0228
2.28% probability that a person selected at random will have an IQ of 110 or higher
70 cm
ex:
100 cm in a meter
so you’d do 100-30 cm
and that equals 70 centimeters
Answer: 6
Explanation:
x + 2x + 1 + 5x + 4 = 53
8x + 5 = 53
8x = 48
x = 6