Type 1 diabetes occurs when your immune system, the body's system for fighting infection, attacks and destroys the insulin-producing beta cells of the pancreas. Scientists think type 1 diabetes is caused by genes and environmental factors, such as viruses, that might trigger the disease.
Answer:
a. is converted to NAD+ by an enzyme called dehydrogenase
Explanation:
The electron transport chain of cellular respiration is the final step that oxidized NADH and FADH2. These reducing powers are formed during glycolysis and Kreb's cycle. Complex I of the electron transport chain present in the inner mitochondria membrane is NADH dehydrogenase. This protein complex accepts electrons from NADH and oxidizes it into NAD+. NADH dehydrogenase couples oxidation of NADH with the pumping of proton towards the intermembrane space.
Answer:
Step 1: Pollination
In general, male gametes are contained in pollen, which is carried by wind, water, or wildlife (both insects and animals) to reach female gametes. The pollen is deposited on a plant's stigma, which is part of the pistil (the elongated part of a flower extending from the ovary). This process is called pollination.
Step 2: Germination
Within a few minutes, pollen tubes begin growing, or germinating, toward the egg cell. These tubes will provide a path for the sperm carried in the pollen to reach the egg.
Step 3: Penetration of the Ovule
The pollen tubes penetrate the ovule, which contains the female gametes.
Step 4: Fertilization
Sperm travel down the pollen tubes and fertilize an egg. Most angiosperms undergo double fertilization, where both an egg and the polar nuclei in the embryonic sac are fertilized.
Explanation:
^^^^^^^^
The bacteria, Angelinus ballerinea secretes a compound that inhibits the growth of other Gram-positive bacteria. Scientists take this compound and add chemical groups to it to make it more stable for use in humans to treat bacterial infections. This is an example of antibiotic.
<h3>
What is antibiotic?</h3>
- Antibiotics from the key class of glycopeptides can stop this process.
- Through five H-bonds, these antibiotics bind to the C-terminal d-Ala-d-Ala of the murein precursor, lipid II, and immature peptidoglycan, preventing transglycosylation and/or transpeptidation during the production of the cell wall.
- Contrarily, antibiotics have easier access to the thick, porous peptidoglycan layer in the cell walls of Gram-positive bacteria, allowing them to more easily enter the cell and/or interact with the peptidoglycan itself.
- The two main antibiotics that prevent the synthesis of bacterial cell walls are penicillins and cephalosporins.
- Penicillin is one of many antibiotics that assault the bacterial cell wall in order to operate.
- The medications specifically stop the bacteria from producing peptidoglycan, a chemical that gives the cell wall the toughness it needs to live in the human body.
Learn more about antibiotic here:
brainly.com/question/6970037
#SPJ4
The amount of available resources in the ecosystem must change at a predictable rate.