Answer: 8
Step-by-step explanation:
Fish cannot drown
Three died but they are still in the tank
Answer:
The worth of the car after 6 years is £2,134.82
Step-by-step explanation:
The amount at which Dan buys the car, PV = £2200
The rate at which the car depreciates, r = -0.5%
The car's worth, 'FV', in 6 years is given as follows;

Where;
r = The depreciation rate (negative) = -0.5%
FV = The future value of the asset
PV = The present value pf the asset = £2200
n = The number of years (depreciating) = 6
By plugging in the values, we get;

The amount the car will be worth which is its future value, FV after 6 years is FV ≈ £2,134.82 (after rounding to the nearest penny (hundredth))
The value of the radius of T is 28 units
<h3>
How to determine the value of the radius of T</h3>
From the question, we understand that:
Segment AB is tangent to T at B
This means that
<ABT = 90
So, we have a right triangle
Let the radius of the triangle be r
By the Pythagoras theorem, we have
AT^2 = AB^2 + VT^2
This gives
(25 + r)^2 = 45^2 + r^2
Open the bracket
625 + 50r + r^2 = 2025 + r^2
Subtract r^2 from both sides of the equation
625 + 50r = 2025
Subtract 625 from both sides of the equation
50r = 1400
Divide both sides by 50
r = 28
Hence, the value of the radius of T is 28 units
Read more about tangent at:
brainly.com/question/17040970
#SPJ1
You times 7×10-(10+2) And making it C 58
Hope that helped
Answer:
a) 25
b) 67
c) 97
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample. In this problem, 
(a) The desired margin of error is $0.10.
This is n when M = 0.1. So






Rounding up to the nearest whole number, 25.
(b) The desired margin of error is $0.06.
This is n when M = 0.06. So






Rounding up, 67
(c) The desired margin of error is $0.05.
This is n when M = 0.05. So






Rounding up, 97