The point G on AB such that the ratio of AG to GB is 3:2 is; G(4.2, 2)
How to partition a Line segment?
The formula to partition a line segment in the ratio a:b is;
(x, y) = [(bx1 + ax2)/(a + b)], [(by1 + ay2)/(a + b)]
We want to find point G on AB such that the ratio of AG to GB is 3:2.
From the graph, the coordinates of the points A and B are;
A(3, 5) and B(5, 0)
Thus, coordinates of point G that divides the line AB in the ratio of 3:2 is;
G(x, y) = [(2 * 3 + 3 * 5)/(2 + 3)], [(2 * 5 + 3 * 0)/(2 + 3)]
G(x, y) = (21/5, 10/5)
G(x, y) = (4.2, 2)
Read more about Line segment partition at; brainly.com/question/17374569
#SPJ1
8 divided by 42 = 5.25 which means you spent $5.25 on each ticket
------------------------------------------------------------------
Question
------------------------------------------------------------------

------------------------------------------------------------------
Split the fraction on the left
------------------------------------------------------------------

------------------------------------------------------------------
Take away h/5 from both sides
------------------------------------------------------------------

------------------------------------------------------------------
Change the denominator to be the same
------------------------------------------------------------------

------------------------------------------------------------------
Put it into single fraction
------------------------------------------------------------------

-------------------------------------------------------------------
Rearrange (This step may not be necessary)
------------------------------------------------------------------

Answer:
this was 3 minutes ago... you still need the answer?
Step-by-step explanation:
Answer:
2005 points
Step-by-step explanation:
1. 35x50=750
2. 2 min. 45 sec.=(-165 sec.)
3. 500x5=2500
4. 2500-495=2005
Hope this helped!!:)