(a) Take the Laplace transform of both sides:


where the transform of
comes from
![L[ty'(t)]=-(L[y'(t)])'=-(sY(s)-y(0))'=-Y(s)-sY'(s)](https://tex.z-dn.net/?f=L%5Bty%27%28t%29%5D%3D-%28L%5By%27%28t%29%5D%29%27%3D-%28sY%28s%29-y%280%29%29%27%3D-Y%28s%29-sY%27%28s%29)
This yields the linear ODE,

Divides both sides by
:

Find the integrating factor:

Multiply both sides of the ODE by
:

The left side condenses into the derivative of a product:

Integrate both sides and solve for
:


(b) Taking the inverse transform of both sides gives
![y(t)=\dfrac{7t^2}2+C\,L^{-1}\left[\dfrac{e^{s^2}}{s^3}\right]](https://tex.z-dn.net/?f=y%28t%29%3D%5Cdfrac%7B7t%5E2%7D2%2BC%5C%2CL%5E%7B-1%7D%5Cleft%5B%5Cdfrac%7Be%5E%7Bs%5E2%7D%7D%7Bs%5E3%7D%5Cright%5D)
I don't know whether the remaining inverse transform can be resolved, but using the principle of superposition, we know that
is one solution to the original ODE.

Substitute these into the ODE to see everything checks out:

Answer:
Step-by-step explanation:
X= (-7+radical 13)/6
X=(-7-radical 13)/6
B. 40, 120, 360, 1080
C. 200,20,2,0.2,0.002
By the fundamental theorem of algebra, we can write

Expanding the right hand side, we get

We want
to be an integer, which means
must also be integers. This means
must be factors of 10. There are several possibilities:


So there are 4 possible values for
: -11, -7, 7, and 11.