They are traveling at right angles to each other so we can say one is traveling north to south and the other west to east. Then we can say that there positions, y and x are:
y=150-600t x=200-800t
By using the Pythagorean Theorem we can find the distance between these two planes as a function of time:
d^2=y^2+x^2, using y and x from above
d^2=(150-600t)^2+(200-800t)^2
d^2=22500-180000t+360000t^2+40000-320000t+640000t^2
d^2=1000000t^2-500000t+62500
d=√(1000000t^2-500000t+6250)
So the rate of change is the derivative of d
dd/dt=(1/2)(2000000t-500000)/√(1000000t^2-500000t+6250)
dd/dt=(1000000t-250000)/√(1000000t^2-500000t+6250)
So the rate depends upon t and is not a constant, so for the instantaneous rate you would plug in a specific value of t...
...
To find how much time the controller has to change the airplanes flight path, we only need to solve for when d=0, or even d^2=0...
1000000t^2-500000t+62500=0
6250(16t^2-8t+1)=0
6250(16^2-4t-4t+1)=0
6250(4t(4t-1)-1(4t-1))=0
6250(4t-1)(4t-1)=0
6250(4t-1)^2=0
4t-1=0
4t=1
t=1/4 hr
Well technically, the controller has t<1/4 because at t=1/4 impact will occur :)
Answer:
C 200
Step-by-step explanation:
It does not appear to be LINEAR so
Start with :
pulse rate = y = 73e^kx
sub in x = .7 when y = 155
155 = 73 e^(.7 * k)
ln ( 155/73) = .7k
.75296567 = .7k
k = 1.07567
for x = 0.9 :
pulse rate = y = 73 e^(1.07567 * .9) = ~ 192 so I expect answer is 200
Answer:
(-1, 3)
Step-by-step explanation:
5x + 2y = 1
+
2x - 2y = -8
7x = -7
x= -1
2(-1) - 2y = -8
-2 - 2y = -8
-2y = -6
y = 3
Answer:
F=55
E=70
Step-by-step explanation:
The total degree of a triangle is 180.
So we have 180-55*2
E=180-110
E=70
1. a. Pretty much, you just have to rearrange it so that the highest power is in the front. So, here's your answer:
b. It's a 4th-degree polynomial. A degree means that "what's the highest power?"
c. It's a trinomial. It has 3 terms, hence it's a
trinomial.
2. a. Since it's an odd power and a negative coefficient, it will be:
x→∞, f(x)→-∞
x→-∞, f(x)→∞
b. The degree is even and the coefficient is negative, so it will be:
x→∞, f(x)→-∞
x→-∞, f(x)→-∞
3. a. This basically means that if you solve for x, you should get -2, 1, and 2. So, to do this, you can just write it in factored form and multiply inwards using any method of your choice (remember that in the parentheses, you should get the above value if you solve for x):

If you multiply it out, you get (also your answer):
4. The zeros are at
x = 3, 2 and
-7.
Multiplicity of 3 is
1, for 2 it's
2, and for -7 it's
3.
Hope this helps!