Answer:
0.54 mole of H2O.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2CH3OH + 3O2 —> 2CO2 + 4H2O
From the balanced equation above,
2 moles of CH3OH reacted to produce 4 moles of water.
Finally, we shall determine the number of mole of water (H2O) produced by the reaction of 0.27 moles of CH3OH. This can be obtained as follow:
From the balanced equation above,
2 moles of CH3OH reacted to produce 4 moles of water.
Therefore, 0.27 moles of CH3OH will react to produce = (0.27 × 4)/2 = 0.54 mole of H2O.
Thus, 0.54 mole of H2O is produced from the reaction.
The percent error associated with Jason’s measurement is 0.596%.
HOW TO CALCULATE PERCENTAGE ERROR:
- The percentage error of a measurement can be calculated by following the following process:
- Find the difference between the true value and the measured value of a quantity.
- Then, divide by the true value and then multiplied by 100
- The true value of the density of iron is 7.874 g/mL
- Jason observed value is 7.921 g/mL
Difference = 7.921 g/mL - 7.874 g/mL
Difference = 0.047 g/mL
Percentage error = 0.047/7.874 × 100
Percentage error = 0.596%.
Therefore, the percent error associated with Jason’s measurement is 0.596%.
Learn more: brainly.com/question/18074661?referrer=searchResults
Answer:
root-mean-sqaure = 2.77 m/s
average = 2.72 m/s
The root-mean-square is always the largest because it takes account of the variance of the spread of the data. The increase is related to the fact that the data varies to sample.
Explanation:
The rootmean-square (R) is the square root of the squares of the valeus divided by the number of the datas.


R = √(46.03)/6
R = 2.77 m/s
The average speed is the sum of the speeds divided by the number of datas:

A = 16.3/6
A = 2.72 m/s
C. A new substance is produced. All others are physical changes.
It would be 1.55x10 to the 9th
hope that helps you