Answer:
See below for answers and explanations
Step-by-step explanation:
<u>Problem 1:</u>
A standard deck of cards contains 52 cards, consisting of 13 spades. If you select only one randomly, the probability of that occurring would be 13/52 or 1/4. Since there are only 26 red cards in a standard deck, then the probability of selecting a red card would be 26/52 or 1/2. Because the two events are independent of each other, their probabilities are multiplied. Therefore, the probability of selecting a spade, and then replacing it in hopes of drawing a red card is (1/2)(1/4) = 1/8.
<u>Problem 2:</u>
We are selecting a spade and then another spade while NOT replacing the first spade (remember that these events are independent of each other also). This means that the total card count will change by picking up the second card. Therefore, the probability of selecting a spade, followed by another spade, is (13/52)(12/51) = 156/2652 = 1/17.
The expected value of the winnings from the game is $4
<h3>How to determine the expected value?</h3>
The payout probability distribution is given as:
Payout ($) 2 4 6 8 10
Probability 0.5 0.2 0.15 0.1 0.05
The expected value is then calculated as:

This gives
E(x) = 2 * 0.5 + 4 * 0.2 + 6 * 0.15 + 8 * 0.1 + 10 * 0.05
Evaluate the expression
E(x) = 4
Hence, the expected value of the winnings from the game is $4
Read more about expected values at:
brainly.com/question/15858152
#SPJ1
Answer:
The answer is 3rd option.
Step-by-step explanation:
In a graph, domain is always represented by the x-axis. So by looking at the graph, the minimum value of x is -2. We can know that x ≥ -2.
A maybe? I don’t know honestly
I'll do Problem 8 to get you started
a = 4 and c = 7 are the two given sides
Use these values in the pythagorean theorem to find side b

With respect to reference angle A, we have:
- opposite side = a = 4
- adjacent side = b =

- hypotenuse = c = 7
Now let's compute the 6 trig ratios for the angle A.
We'll start with the sine ratio which is opposite over hypotenuse.

Then cosine which is adjacent over hypotenuse

Tangent is the ratio of opposite over adjacent

Rationalizing the denominator may be optional, so I would ask your teacher for clarification.
So far we've taken care of 3 trig functions. The remaining 3 are reciprocals of the ones mentioned so far.
- cosecant, abbreviated as csc, is the reciprocal of sine
- secant, abbreviated as sec, is the reciprocal of cosine
- cotangent, abbreviated as cot, is the reciprocal of tangent
So we'll flip the fraction of each like so:

------------------------------------------------------
Summary:
The missing side is 
The 6 trig functions have these results

Rationalizing the denominator may be optional, but I would ask your teacher to be sure.