Answer:
The correct insulin pathway is described as under:
2. Binding of insulin to the alpha subunit of the insulin receptor
8. Activation of insulin receptor tyrosine kinase
3. Phosphorylation of IRS proteins
6. Phosphorylation of phosphinositide 3-kinase (PI-3K)
4. Conversion of PIP2 to PIP3
7. Activation of PIP3-dependent protein kinase B (PDK1)
5. Glut4 receptors transported to the cell membrane
Explanation:
The insulin signaling pathway is described as under:
RTK (receptor tyrosine kinases) which is a receptor for insulin is an extracellular receptor but in contrast to other cell surface receptors it is catalytic in nature. In the absence of insulin (ligand), it is monomeric but as soon as it gets activated (activation occurs upon ligand binding), it undergo dimerization. It leads to auto-phosphorylation in it's tyrosine residue which subsequently leads to phosphorylation of tyrosine residue of other receptors. Such hyper-phosphorylated receptor have high affinity with enzyme/molecule like IRS protein which have SH2 domain . IRS down stream activates phosphinositide 3-kinase (PI-3K). This enzyme converts component of animal cell membrane PIP2 into PIP3. PIP3 also remains membrane bound but it has the potential to phosphorylate another enzyme named as PIP3-dependent protein kinase B (PDK1). Further, PDK1 leads to the activation of Akt or PK-B. Akt is a serine-threonine kinase which ultimately leads to the recruitment of Glut4 receptors on cell membrane for uptake of more and more glucose into the cell.
Note: Apart from this Akt also phosphorylates another protein named as FOXO which ultimately causes cell growth, Akt can also phosphorylate BAD protein so as to restrict cell apoptosis or we can say it leads to cell survival, Akt also leads to translation in a cell with the help of mTOR raptor etc.
I think it is Authority hope this helps
Answer:
Unlike matter, as energy flows through an ecosystem in one direction, from photosynthetic organisms to herbivores to omnivores and carnivores and decomposers, less and less energy becomes available to support life.
Explanation:
Primary producers use energy from the sun to produce their own food in the form of glucose, and then primary producers are eaten by primary consumers who are in turn eaten by secondary consumers, and so on, so that energy flows from one trophic level, or level of the food chain, to the next.
Energy is acquired by living things in three ways: photosynthesis, chemosynthesis, and the consumption and digestion of other living or previously-living organisms by heterotrophs.
Living organisms would not be able to assemble macromolecules (proteins, lipids, nucleic acids, and complex carbohydrates) from their monomeric subunits without a constant energy input.
Answer:
carbohydrate chain
Explanation:
Cholesterol is more rigid than some of the other lipids in the membrane. Cholesterol keeps the fatty-acid tails of the phospholipids bilayer from sticking together, which contributes to the fluidity of the plasma membrane. The membrane would become rigid. Transport protein move needed substances or waste materials through the plasma membrane
. Carbohydrate defines the cell characteristics and help cells identify chemical signals.
Answer: Option C) AGU
Explanation:
AGU and AGC are the two codons that code for the amino acid, Serine. These codons are made of three nucleotides, thus they have a triplet nature.
AGU that code for serine is made of Adenine, Guanine and Uracil joined together, carried on the messenger RNA to be added to the growing polypeptide chain.