2 answers:
Answer:
- 150π ft²
- 10π ft.
Step-by-step explanation:
Area of the sector :

Finding the area given r = 30 ft. and θ = 60° :
⇒ Area = π × (30)² × 60/360
⇒ Area = π × 900/6
⇒ Area = 150π ft²
===========================================================
Length of the arc :

Finding the arc length given r = 30 ft. and θ = 60° :
⇒ Arc Length = 2 × π × 30 × 60/360
⇒ Arc Length = 60/6 × π
⇒ Arc Length = 10π ft.
Answer:
1. 150π ft²
2. 10π ft²
<u>Step-by-step explanation:</u>
<em>H</em><em>ello </em><em>there</em><em>!</em>
<em>Here</em><em> is</em><em> </em><em>how </em><em>we </em><em>solve </em><em>the</em><em> </em><em>given</em><em> </em><em>problem</em><em>:</em>
- Area of the sector of a circle refers to the fractional circle area. Which is given by; (∆°/360°) × πr². Where ∆° is the angle subtended by the arc.
- the arc length also refers to the length swept by the arc with angle theta (∆°) - subtended. Given by
L = ∆°/360° ×2πr
From our problem,
∆ = 60°, r = 30ft
Lets substitute the values
1. A = (∆°/360°) × πr²
= 60°/360° × π × 30²
= 150π ft²
2. L = ∆°/360° × 2πr
= (60/360) × 2 × 30 × π
= 10π ft²
NOTE:
Use the formulas given below to be on a save side;
- A = (∆°/360°) × πr²
- L = ∆°/360° × 2πr.
<em>I </em><em>hope</em><em> </em><em>this </em><em>helps.</em><em> </em>
<em>Have</em><em> </em><em>a </em><em>nice </em><em>studies</em><em>.</em><em> </em>:)
You might be interested in
Answer:
1
-
1
Step-by-step explanation:
K + a + h = 50
a = 2h
k = h - 10
(h - 10) + 2h + h = 50
4h - 10 = 50
4h = 50 + 10
4h = 60
h = 60/4
h = 15 <=== Henry sent 15
a = 2h
a = 2(15)
a = 30 <=== Aldo sent 30
k = h - 10
k = 15 - 10
k = 5 <=== Keiko sent 5
Answer:
Step-by-step explanation:
The answer is C I thought it was D at first
Quadrant I because the point is (4,4)